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bstract

The eastern king prawn (Melicertus plebejus) is a valuable target species for commercial fisheries operating on the Australian east coast. The
ayesian analysis presented here aims to determine the current state and productivity of the NSW component of the eastern king prawn stock
nd analyse the possible consequences of altering commercial catches in the future. The Bayesian approach is well suited to both these aims,
articularly given the significant uncertainty about the true population dynamics of the stock, and the multiple sources of information available.
he sampling/importance resampling method was applied as it is numerically robust and straightforward to implement. Various types of uncertainty
ere incorporated into this analysis including: process and observation error, uncertainty in model structure, and uncertainty associated with the
arameter values (captured with prior probability distribution functions). A delay–difference model was used with four different representations
f recruitment. Each of the four models examined provided differing results for stock depletion since 1984/1985. Despite this uncertainty, none of
he models suggested that the stock has been heavily depleted since 1984/1985. The analysis also identifies 2003/2004 as a particularly poor year
or production (as was 1984/1985) but that such events lie within the limits of historically observed variability. Projections of the modelled stock

ynamics into future years indicate that the stock does not appear to be at high-risk in the near future. Finally, the results of the decision analysis
uggest that significant changes in the future catch are not expected to have a large impact on catch rates or the stock depletion ratio. These results,
owever, are dependent upon the assumption of continued and robust recruitment from Queensland.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The eastern king prawn (Melicertus plebejus) is a valuable
arget species that is harvested by commercial fisheries operating
n New South Wales (NSW), Victoria and Queensland (Aus-
ralia). The combined value of the landed catch in NSW and
ueensland is around AUD$ 70 million per year (wharfside-

anded value) (NSW Fisheries, 2001; NSW DPI, 2004; O’Neill
t al., 2005), with the majority of prawns caught in Queens-

and waters. A significant recreational fishery also harvests this
pecies in both states. The commercial and ecological impor-
ance of eastern king prawns has encouraged the development
f a number of population models (Lucas, 1974; Glaister et al.,
990; Gordon et al., 1995; O’Neill et al., 2005).

∗ Corresponding author. Tel.: +61 2 9385 2073; fax: +61 2 9385 1558.
E-mail address: m.ives@student.unsw.edu.au (M.C. Ives).
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Both the fishing industry and fishery managers in NSW have
dentified the monitoring and assessment of eastern king prawns
s a continuing research priority (NSW Fisheries, 2001; NSW
PI, 2004). A dynamic model of the population is an impor-

ant component of such an assessment and is the subject of the
esearch presented here. An earlier model of the NSW com-
onent of the stock published by Gordon et al. (1995) was
spatial extension to the yield-per-recruit analysis presented

y Glaister et al. (1990). This deterministic model provided
mportant insights into the trade-offs operating between indi-
idual growth, mortality and migration for the fishery along
he NSW coast. In contrast, the modelling frameworks devel-
ped by O’Neill et al. (2005) used the more standard structures

f a delay–difference and a length-structured model. Although
’Neill et al. (2005) considered information from both NSW

nd Queensland, the emphasis of their study was the Queensland
shery.

mailto:m.ives@student.unsw.edu.au
dx.doi.org/10.1016/j.fishres.2006.11.006
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The research presented here has two primary objectives.
he first objective is to determine the current state and pro-
uctivity of the NSW eastern king prawn stock. The second
bjective is to gain a better understanding of the conse-
uences of alternative management strategies for the stock
aking into account the uncertainty regarding the true popula-
ion dynamics. The Bayesian approach is well suited to both
f these objectives, particularly because there is significant
ncertainty about how best to model the true population dynam-
cs of the stock (including the model structure and parameter
alues) and because there exists multiple sources of infor-
ation that are relevant (such as prior research conducted in
ueensland).
The Bayesian approach to stock assessment integrates obser-

ations from the stock being examined with population models
hat contain parameters whose values can have prior information
ssociated with them from other stocks and species (Punt and
ilborn, 1997). Bayes’ theorem is employed to combine these
ifferent sources of information to generate posterior probability
istribution functions (pdf) of the model parameters. A posterior
df can also be associated with any metrics that are generated
y the model, including performance indicators of managerial
nterest, such as the degree of stock depletion or recovery. Pos-
erior pdfs can therefore be used to provide insights into the
onsequences of alternative managerial strategies for the fishery
McAllister and Kirkwood, 1998).

The biology and the life history of eastern king prawns has
een considered by several researchers (Dall, 1957; Ruello,
975; Young and Carpenter, 1977; Coles and Greenwood, 1983;
laister, 1983; Suthers, 1984; Montgomery, 1990; Courtney et

l., 1995). Such studies have shown that, although the mor-
hology of the species varies little along the east coast of
ustralia, the demography of the species can vary consider-

bly. The growth, mortality and recruitment of this species
ppear to vary greatly both in time and space. Although a lot
f research has been conducted on prawn growth and mortal-
ty in NSW (Ruello, 1975; Glaister, 1983; Glaister et al., 1987,
990; Montgomery, 1990; Gordon et al., 1995), other important
esearch into issues such as the species catchability or the effi-
iency of the fleet (O’Neill et al., 2003, 2005), and reproduction
nd the stock–recruitment relationship (Young and Carpenter,
977; Courtney et al., 1995, 1996, 2002; Watson et al., 1996) has,
or the most part, been conducted only in Queensland. Dynamic
odels developed in NSW thus need a systematic method to

ncorporate information from the Queensland fishery. Although
ueensland catch and effort data were not used in this study, the

esearch conducted on the Queensland fishery was drawn upon
o develop model structures and informative prior probability
istributions.

. Methods

.1. Bayesian analysis using sampling/importance

esampling

Monte Carlo methods such as Markov Chain Monte Carlo
nd importance sampling are the most frequently used methods

w
f
m
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or Bayesian stock assessment. For the purposes of this study we
hose to use the sampling/importance resampling (SIR) method
hich was numerically robust and straightforward to implement

McAllister et al., 1994).
The SIR algorithm involves two distinct phases. Phase one

raws a value from the prior pdf of each of the parameters (a
arameter set) and calculates the likelihood of this set given
he observations. This process is iterated many times (up to 15

illion times in our case), with the parameter set being stored
long with the likelihood of this set. Phase two resamples these
ntermediate results to approximate the posterior pdf of each
arameter value. The intermediate results are resampled with
eplacement using a probability based upon the importance func-
ion. In our case, the joint prior pdf was used as the importance
unction (McAllister et al., 1994; Raftery et al., 1995), which
eant that the resampling was proportional to the likelihood of

ach parameter set. Thus the greater the likelihood of a param-
ter set the more frequently this set would be resampled and
ncluded within the posterior. For a more detailed explanation
f Bayesian SIR methods see McAllister et al. (1994) and Punt
nd Hilborn (1997).

.2. The alternative population dynamics models

A delay–difference model was the basis of each of the model
tructures employed in this analysis. The delay–difference
odel was first developed by Deriso (1980) and later generalised

y Schnute (1985). This model has been applied several times
or stock assessment (Butler et al., 2003; Dichmont et al., 2003;
asconcellos, 2003; Pope, 2004) [see Meyer and Millar (1999)

or a list of less recent publications]. In terms of complexity, the
elay–difference model lies between the simpler surplus pro-
uction models and the more complex age- or length-structured
odels, providing some of the advantages of both of these

lternatives. Like an age-structured model, the delay–difference
odel has a sound biological foundation (such as life history),

llowing many parameters of biological significance to be esti-
ated directly from observations. The delay–difference model

lso retains the simpler data requirements of the surplus pro-
uction model but allows for the representation of time-lags in
rowth and recruitment. The model also enables predictions of
verage body weight (and therefore size), which is an impor-
ant management indicator when age composition data are not
vailable (Walters and Ludwig, 1994). Finally, delay–difference
odels are numerically efficient; aiding their application within
ayesian analyses, which usually require many millions of iter-
tions.

Delay–difference models are based on a general equation
or population biomass that incorporates processes for survival,
rowth and recruitment. Eq. (1) is the difference equation for
iomass used in this study:

= (1 + ρ)s B − ρs s B + w R (1)
t t−1 t−1 t−1 t−2 t−2 k t

here Bt is the exploitable biomass at the beginning of month t
or prawns that are aged k months and older (k being the age in
onths of all juvenile prawns when they recruit to the fishery);
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t the monthly survival during month t; wk the average weight of
rawns at age k; Rt is the number of k month old recruits entering
he fishable stock at the beginning of month t. Parameter ρ is the
lope of the Ford-Walford growth function under the conditions
evised by Deriso (1980) in which the intercept of the Ford-
alford plot is essentially set to zero (see Quinn and Deriso,

999, p. 212 for more details).
Survival rate st during month t is determined by the

nstantaneous natural mortality rate (M) and the instantaneous
migration rate (G) to Queensland, as well as the harvest rate ht

sing Eq. (2):

t = e−(M+G)(1 − ht) (2)

here

t = Ct

Bt

(3)

here Ct is the observed landed catch in NSW from all commer-
ial fisheries during month t and Bt is the exploitable biomass at
he beginning of month t. This model also assumes that selectiv-
ty is uniform across all size classes of prawns and only mature
rawns are subject to exploitation. Recent studies into the selec-
ivity of prawn trawls have shown that selectivity of these gears
s not knife-edged but can be represented with a logistic rela-
ionship (Broadhurst et al., 2004; Macbeth et al., 2005). The
ssumption of knife-edged selectivity will therefore misrepre-
ent catches marginally above and below the age when 50% of
he prawns are vulnerable. Including this additional complexity
s not warranted in this study, and knife-edged selectivity is a
tandard simplifying assumption for a delay–difference model.

In Eqs. (1)–(3), no assertions have yet been made regarding
ecruitment processes. A number of alternative representations
f recruitment resulted in the creation of multiple model struc-
ures. Eqs. (1)–(3) are common to all four models presented
ere.

For the “base model”, the stock–recruitment relationship was
ased upon the Beverton–Holt model (see Haddon, 2001). The
tock–recruitment relationship is as follows:

sr = wk

(
1 − z − 0.2

0.8z

)
(4)

sr = z − 0.2

0.8zR0
(5)

t+k = (Bt − Ct)

Asr + Bsr(Bt − Ct)
(6)

he parameter z represents the steepness of the stock–
ecruitment relationship, and Asr and Bsr are the parameters of the
everton–Holt stock–recruitment relationship where (Bt − Ct)

epresents the exploitable biomass less catch during time t, R0 is
he initial recruitment, and wk is the average weight of prawns
t age k. This base model therefore assumes that recruitment
s related deterministically to exploitable stock size and there

s no additional recruitment pattern. The other models explore
lternatives to these assumptions.

Bayesian analysis uses a likelihood function to calculate the
robability of the data given the model and the current values

e
t
t
d

ig. 1. Observed catch per unit effort (kg/boat-day) of eastern king prawns from
he ocean prawn trawling in NSW waters from July 1984 to June 2004. Tick

arks indicate the midpoint (June) of the labelled year.

f the model parameters. In this study, the observations used
ere the monthly catch per unit effort (CPUE or Ut) records of

astern king prawns from the NSW Ocean Trawl Fishery from
uly 1984 to June 2004 (Fig. 1). This indicator of abundance
as estimated with Ût which was assumed to be proportional to

he exploitable biomass (Bt) and catchability (qt) at time t, i.e.

ˆ
t = qtBt (7)

The likelihood function assumed that the observed CPUE
as log-normally distributed about the predicted values with

tandard deviation σ. Thus the log-likelihood (LL) of the obser-
ations given the model was proportional to (McAllister and
irkwood, 1998):

L = − 1

2σ2

240∑
t=1

[
log

(
Ut

Ût

)]2

(8)

Seasonal variability was evident in the observed catch rates
see Fig. 1). After exploring various options, it was assumed that
his within-year variability was driven by changes to catchabil-
ty (rather than recruitment) and this seasonality was modelled
sing the normal distribution function:

t = q

(
1 + exp

(
− ((mt − μq)2)

θq

2σ2
q

))
(1 + δ)t (9)

here mt is the number of the month (1, . . ., 12), and μq, θq, and
q are the mean, slope and variance of the annual catchability
attern, respectively.

The final term δ in Eq. (9) is the change in catchability over
ime. Catchability is affected by changes in fishing power, such
s gear and vessel changes, as well as technological improve-
ents. An extensive study on the changes in fishing power in the

ast coast prawn fisheries was conducted by O’Neill et al. (2003).
his study relied primarily on Queensland catch and effort data
nd a database of technological changes in the fleet. The authors

stimated an increase in catchability for the Queensland ocean
rawl fleet, which was used to construct a prior probability dis-
ribution of changes to catchability (see Appendix A for more
etails).
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Table 1
Alternative stock recruitment relationships for the four model structures

Model Stock Recruitment relationship

Base [Eq. (6)] Rt+k = (Bt − Ct)

Asr + Bsr(Bt − Ct)
RE Rt+k,y = Rt+k erey (10)
MR Rt+k,y = (λRt+k + (1 − λ)R0) erey (11)

2C Rt+k = (λRt+k + (1 − λ)R0)

(
1 + 1

2

[
cos
(

t

LRf
− LRp

)]2
)

(12)

B itmen
a y; Rt,y

r nd ph

E
m
o
r
n
e
i
s
t
s
o
w
d

f
B
T
r
t
2
e
b
c
i
y

d
s
w
m
l
a
f
c
m
u
w

m
a
p
c
c

a
m
f
c

o
t
y
a

2

r
t
u
v
s
a
l

c
s
a
r
c
v

t
t
r
t
l
m
o
d
h
r
m
A

t: biomass in month t; Ct: total catch in month t; Asr, Bsr: Beverton–Holt recru
juvenile prawn recruits to the fishery; rey recruitment error exponent in year

ecruitment from both Queensland and NSW; LRf and LRp are the frequency a

Three additional models were also considered in this study.
ach model contained the same underlying delay–difference
odel (described above) but had different representations

f recruitment. These alternative models were developed in
esponse to the patterns found in the residuals of the prelimi-
ary model results. The base model did not include any process
rror (Hilborn and Mangel, 1997) which is likely to be present
n prawn recruitment dynamics. Replacing, or amending, the
tock–recruitment relationship is the simplest way to improve
his representation. Furthermore, the assumption of a simple
tock–recruitment relationship, where recruitment is a function
f stock size, is likely to be an over-simplification of a system
here the majority of the stock biomass is outside of the model
omain.

The different stock–recruitment equations for each of the
our model structures are provided in Table 1 (including the
everton–Holt stock recruitment function of the base model).
he three alternative models are described in turn. First, the

ecruitment error model (RE model) incorporates all of the equa-
ions of the base model with the addition of Eq. (10) which adds
0 recruitment error parameters to the model, one parameter for
ach year of the observations. Each error term is exponentiated
efore being applied to the Beverton–Holt recruitment that is
alculated for each month in that year. Thus, the term exp(rey)
s applied to each calculated recruitment of each month in year
.

The third model assumes that recruitment for prawns is partly
riven by the local NSW stock and partly by the Queensland
tock. This model is based on the work of (Gordon et al., 1995)
ho suggested that recruitment of eastern king prawn in NSW
ay be the result of the spawning of both the NSW and Queens-

and stocks. This mixed recruitment (MR) model combines:
NSW component (using a Beverton–Holt stock recruitment

unction); a Queensland component, which is represented as
onstant recruitment (a proportion of R0—the initial recruit-
ent); and a stochastic term (the recruitment error exponents

sed in the RE model). This recruitment model is represented
ith Eq. (11).
The fourth model is the delay–difference with two cycles (2C)

odel. This model was based upon an examination of the residu-

ls from the base model that appeared to exhibit a long-run cyclic
attern. This model therefore contains both a short-run seasonal
atchability cycle as well as an additional long-run recruitment
ycle. The 2C model contains the mixed recruitment equation

w
i

e

t parameters; Rt+k: recruitment in month t + k where k is the age in months that
: recruitment in month t, year y; λ: fraction of recruits from NSW; R0: initial

ase of the long-run recruitment cycle.

nd is the same as the MR model except that the 20 recruit-
ent error parameters are replaced with the cyclic recruitment

unction as shown in Eq. (12). The 1/2 term was employed to
onstrain the amplitude of the recruitment variation.

The primary management indicator used to evaluate the state
f the stock is the biomass depletion ratio. The depletion ratio is
he calculated average annual biomass in 2003/2004 (financial
ear from 1 July 2003 to 30 June 2004) divided by the calculated
verage annual biomass in 1984/1985, abbreviated as B04/B85.

.3. Model evaluation

Calculated catch rates were compared with observed catch
ates from July 1984 to June 2004 (20 × 12 = 240 months). Due
o transient effects in the model, an iterative burn-in process was
sed to stabilize the model run before comparisons with obser-
ations were made. The burn-in process involved running the
imulation, using average seasonal catch rates, until the moving
verage of the biomass (using a 12 month window) changed by
ess than 0.1%.

The results of each model run were evaluated by the following
riteria: the quality of the posterior pdf (see below); a compari-
on of the prior pdf with the associated marginal posterior pdf;
n analysis of sensitivity to alternative priors; an analysis of
esiduals and the correlations between fitted parameter values; a
omparison of estimated biological indicators against observed
alues; and finally Bayes factors.

Evaluation of each posterior pdf consisted of three diagnos-
ic tests. Firstly, the efficiency of the importance function in
he SIR method was estimated using the maximum importance
atio (MIR) (McAllister and Pikitch, 1997). The MIR is equal
o the ratio of the maximum of likelihoods to the sum over all
ikelihoods. McAllister and Pikitch (1997) found that a maxi-

um importance ratio of 0.04 “. . . appeared to provide estimates
f posterior pdfs sufficiently precise for stock assessment and
ecision analysis”. A more conservative value of 0.005 was,
owever, employed. Another means of improving the poste-
ior pdf is to ensure that a single parameter set is not assigned
ore than 1% of the total probability (Punt and Hilborn, 1997).
ccordingly, the maximum single density (MSD) for each model

as calculated which reports the percentage of the posterior that

s composed of the dominant parameter set.
Finally, the posterior of the depletion ratio (B04/B85) was

valuated by examining the location of the depletion ratio
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ssociated with the parameter set that achieved the maximum
largest) log-likelihood value. If the values of the maximum
ikelihood depletion ratio appeared in the tails of the posterior
hen the importance function may have needed to be reassessed
McAllister and Ianelli, 1997).

The quality of a model as a whole was also judged by
he realism of the biological indicators calculated, particularly
he average prawn weight. This indicator can be compared
irectly to observations, so it was used to evaluate whether the
odels were producing realistic patterns. The average prawn
eight could also have been incorporated into a combined like-

ihood function along with CPUE, but this approach would have
equired additional coefficients to weight the two resulting like-
ihood functions. Average stock weight (w̄t) was calculated as
umbers of prawns were tracked in conjunction with biomass
Eqs. (13)–(15)):

0 = B0

wk

(13)

t = st−1Nt−1 + Rt (14)

t = Bt

Nt

(15)

In Bayesian analysis, the Bayes Factor is regarded as the best
riteria for judging the quality of a model (notation and approach
dopted from Kass and Raftery, 1995) and is used to compare
wo alternative models:

1,2 = p(x|M1)

p(x|M2)
(16)

here for both models Mi (i = 1, 2):

(x|Mi) =
∫

p(x|θi, Mi)p(θi|Mi)dθi (17)

here θi are the parameters of model Mi, p(θI|Mi) is the prior
ensity of θi in model Mi and p(x|Mi) is the marginal likelihood
f the data given model Mi. Because of the integration required
n Eq. (17) an exact calculation of Bayes Factors is often not pos-
ible. However, various methods are available to estimate Bayes
actors and one based on importance sampling is used here. This
ethod estimates the Bayes factor as the harmonic mean of the

ikelihoods of a sample from the posterior distribution (Newton
nd Raftery, 1994):

�(x|Mi) =
⎧⎨
⎩ 1

m

m∑
j=1

p(x|θ(j), Mi)
−1

⎫⎬
⎭

−1

(18)

here {θ(j): j = 1, . . ., m} are m samples from the posterior distri-
ution of model Mi. The above estimator converges to the correct
alue as the number of samples increases but is susceptible to any
ample, θ(j), that possesses a small likelihood, which can have a
arge effect on the final result (Newton and Raftery, 1994). This
stimator is, however, relatively easy to compute and in practice

ppears accurate enough (Kass and Raftery, 1995; Bolton et al.,
003).

The Bayes factors for each of the RE, MR and 2C models
as calculated using the base model as M2 in Eq. (16). The base

s
w
i
i

Research 84 (2007) 314–327

odel was chosen as the comparative model because it was the
implest model from which all other the models were derived.
he calculated Bayes factors were then utilised to produce a
ayes model average (BMA) composite posterior pdf (Hoeting
t al., 1999). The BMA composite was generated by resampling
he posterior pdfs of each of the RE, MR and 2C models in
roportion to the relative Bayes factors for that model divided
y the sum of the Bayes factors for all three models (each of the
odels were given an equal prior probability).

.4. Assessing the consequences associated with different
uture catches

Decision makers in fisheries are concerned, inter alia, with
he consequences of alternative management actions on a fish
tock. ‘Decision Analysis’ is an approach that provides a
onceptually straightforward procedure for predicting such con-
equences under various models of uncertainty (Smith, 1988;
ilborn et al., 1994; McAllister et al., 1994; McAllister and

anelli, 1997; Punt and Hilborn, 1997; McAllister and Kirkwood,
998; Meyer and Millar, 1999; Hilborn and Punt, 2001). In
he Bayesian approach, the model dynamics are projected into
he future to determine possible outcomes of alternative man-
gement strategies. The probabilities of various outcomes are
odelled using the alternative model structures and their asso-

iated posterior pdfs.
The eastern king prawn fisheries in NSW are input controlled.

he NSW Department of Primary Industries (NSW DPI) man-
ges fishermen’s activities through the number of commercial
icences and through restrictions on fishing gears, boat size and
ngine power, as well as temporal and spatial closures. Rather
han attempt to model the effort dynamics in detail, the decision
nalysis was simplified by only considering the total catch.

Each of the four models was projected forward 60 months (5
ears) and included recruitment stochasticity (process error) if
t existed in the model. The average annual catch during the cali-
ration period (July 1984 to June 2004) was around 1000 tonnes
er annum. Four catch scenarios were evaluated using the mod-
ls. The first scenario involved reducing annual catch to an
verage of 250 tonnes per annum (Scenario 1). This scenario
as devised to examine the effect of small catches in the fishery.
he second scenario involved retaining catches at an average of
000 tonnes per annum, the third scenario involved increasing
atch to an average of 1750 tonnes per annum, and the final sce-
ario involved increasing catch to an average of 4000 tonnes per
nnum. This last scenario is unlikely to ever occur in reality, but
as included to examine how such a large catch would affect

he various models.
The guidelines presented in McAllister and Kirkwood (1998)

ere used in the construction of the decision analysis. The results
re summarized in a decision table presenting the pdf for the
anagement indicator, in our case the depletion ratio (B09/B85),

artitioned over the alternative models with the expected con-

equences for each scenario presented. The seasonality in catch
as included in the projections by partitioning the annual catch

n proportion to the average monthly catch during the model cal-
bration period. Management scenarios were chosen such that
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heir consequences would be noticeably different under each
odel, demonstrating the influence of the different model struc-

ures (McAllister and Kirkwood, 1998).

. Results
A summary of the results from the Bayesian analysis is pro-
ided in Table 2. The table presents the quartiles of the prior and
arginal posterior pdfs for the model parameters where prior

o

t
i

able 2
uartiles of the prior and posterior probability distribution functions (pdf) for the mo

arameter Quartile Prior pdfs Base model
posterior pdfs

R
po

(×10−6) 1 0.6 2.6 2.
2 3.1 3.5 3.
3 18.0 4.8 4.

(×10−4) 1 1.3 2.6 1.
2 3.0 4.1 3.
3 4.7 5.8 4.

a 1 0.81/0.40 0.81 0.
2 0.87/0.60 0.87 0.
3 0.94/0.80 0.94 0.

+ G (month−1) 1 0.17 0.36 0.
2 0.21 0.41 0.
3 0.27 0.47 0.

(month−1) 1 1.03 1.03 1.
2 1.05 1.05 1.
3 1.08 1.08 1.

(%) 1 25 N/A N
2 50 N/A N
3 75 N/A N

0 (tonnes) 1 5700 12600 10
2 10500 15600 14
3 15300 17900 17

04 (tonnes) 1 5300 46
2 7100 64
3 9600 87

04/B85 1 1.01 0.
2 1.01 0.
3 1.01 0.

/Z 1 0.22 0.
2 0.25 0.
3 0.30 0.

¯ 04 (g) 1 28.2 25
2 32.3 28
3 37.4 33

IR 0.0001 0.
SD 0.06% 0.
axLL B04/B85 1.00 0.
ayes Factors 0.
MA (%) 0.

arameters include: q, catchability (fleet efficiency); δ, annual growth in catchability (fle
, instantaneous monthly natural mortality; G, instantaneous monthly emigration rat

0, initial biomass; B04, calculated biomass in 2003/2004; w̄04, average prawn weig
IR, maximum importance ratio; MSD, maximum single density of B04/B85 poste

chieved the maximum likelihood.
a Note: The two pairs of values shown in the prior pdfs column for the parameter z

alues used for the MR and 2C models.
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dfs were defined (q, δ, z, M + G, and ρ). Quartiles are also pre-
ented for the posterior pdfs of the calculated biomass at the
nd of financial year 2003/2004 (i.e. B04); the biomass deple-
ion ratio (B04/B85); the ratio of average fishing mortality to total
ortality (F/Z); and the average prawn weight (w̄04) at the end
f 2003/2004.
Table 2 also provides the diagnostics that are used to evaluate

he quality of the model’s posterior pdfs including the maximum
mportance ratio (MIR), the maximum single density (MSD), the

dels considered along with other diagnostic results

E model
sterior pdfs

MR model
posterior pdfs

2C model
posterior pdfs

BMA
posterior pdfs

5 1.2 1.5 1.4
4 1.8 2.0 1.9
8 2.9 2.9 2.9

5 2.7 1.2 1.9
0 4.3 2.8 3.6
7 5.9 4.4 5.3
81 0.38 0.51 0.44
87 0.58 0.72 0.65
94 0.79 0.88 0.84

34 0.37 0.43 0.40
39 0.42 0.49 0.45
44 0.48 0.56 0.52

03 1.03 1.02 1.02
05 1.05 1.05 1.05
08 1.08 1.07 1.07

/A 26 14 19
/A 51 34 43
/A 76 62 71

600 8400 8900 8600
000 12500 12700 12600
100 16300 16100 16200

00 7200 7600 7400
00 11100 10900 10900
00 16700 14800 15500

93 0.93 1.12 0.95
94 0.95 1.16 1.02
97 0.97 1.21 1.16

24 0.13 0.12 0.13
29 0.17 0.15 0.16
35 0.24 0.20 0.22

.0 30.3 26.1 27.8

.9 34.6 29.5 31.7

.7 39.8 33.0 36.3

0002 0.0001 0.0004
12% 0.05% 0.12%
96 0.92 1.15
0002 1.0198 1.0042
0% 50.4% 49.6%

et efficiency); z, steepness of the Beverton–Holt stock–recruitment relationship;
e; ρ, slope of Ford-Walford growth function; λ, fraction of recruits from NSW;
ht in 2003/2004; B04/B85, stock depletion ratio of (2003/2004)–(1984/1985);
rior; Max LL B04/B85, the value of B04/B85 produced by the simulation that

are the values for the priors used for the base and RE model followed by the
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aximum log-likelihood estimate of the depletion ratio (maxLL
04/B85), the Bayes factors for the RE, MR and 2C models
nd the percentage of each model used to produce the BMA
omposite.

Table 2 indicates that for the model parameter ρ (the slope
f Ford-Walford growth function) the posteriors do not differ
reatly from the priors. For other parameters, such as M + G
natural mortality plus emigration), q (the catchability), and B0
the initial biomass) there is a significant contrast between the
rior and posterior pdfs. This is the result of the models using
he parameters M + G, q and B0 as the primary means of calibrat-
ng the calculated catch rates to the observed catch rates. This is
videnced by the fact that the medians of the posteriors of M + G
or all models are consistently greater than the medians of the
riors, and that the base and RE models have higher values for
but lower values for B0. Such results suggest that there is a

ack of contrasting information in the observed catch rates to
pecify all of the model parameters (which is not surprising).
he posterior pdfs for the parameter z (the slope of the Beverton
olt stock–recruitment relationship) and λ (the percentage of

ecruitment originating from NSW) appear to suggest a some-
hat stronger recruitment from NSW in the MR model when

ompared to the 2C model.
The management indicators produced by each of the models

B04, B04/B85, F/Z, and w̄04) suggest some interesting differ-
nces between the models. The RE model shows the highest
xploitation rate (F/Z) due possibly to its relatively lower natu-
al mortality and emigration rate (M + G). The estimated natural
ortality and emigration rate (M + G) is largest for the 2C model
hich is somewhat surprising since it displays the highest deple-

ion ratio values (B04/B85). However, the 2C model estimates a
ower absolute biomass (B04) and also estimates a lower annual
rowth in fleet efficiency (δ). The average stock weight value
w̄04) for all models lies within the expected range of around
.03 kg (30 g) (Glaister et al., 1990).

Fig. 2 presents the marginal posterior probability distri-
utions of the depletion ratio for the four models using the
nformative prior pdfs summarized in Table 2 (with details pro-
ided in Appendix A). Also illustrated on Fig. 2 is the Bayes
odel averaging (BMA) composite posterior, which is, for

ntents and purposes, evenly divided between the MR and 2C

odels (actual percentages are given in Table 2). Note how

he differing representation of recruitment of these two mod-
ls causes greater divergence in the depletion ratio than the
ariability in the parameter estimates within any one particu-

p
p
i

able 3
esults of the decision analysis for the calculated depletion ratio given four alternat
-year period from July 2004 to June 2009

odel Projected catch

Scenario 1, 250 t.p.a Scenario 2, 1000 t.p.a

ase 1.03 (1.03, 1.04) 1.00 (1.00, 1.00)
E 1.05 (0.94, 1.16) 1.00 (0.90, 1.12)
R 1.03 (0.93, 1.15) 1.00 (0.90, 1.12)

C 1.24 (1.18, 1.30) 1.21 (1.15, 1.27)
MA 1.17 (1.03, 1.26) 1.14 (1.00, 1.24)

alues given are the median depletion ratio B09/B85 with the first and third quartiles i
ig. 2. Comparison of the posterior probability distributions of the stock deple-
ion ratio (B04/B85) for the four models considered as well as the Bayesian model
verage composite.

ar model. This uncertainty in the model structure is represented
n the width of the BMA posterior of the depletion ratio which
anges from around 0.85–1.40, indicating a much larger uncer-
ainty compared to the amount reported by any single model
tructure. Fig. 3 provides a graphical representation of the prior
nd posterior pdfs of some of the key parameters and indicators
rom Table 2 for the BMA composite, showing the extent of our
ncertainty in their estimated values.

The small variability of the posterior for the base model was
consequence of the poor model fit (note the relatively thin

epletion ratio posterior pdf for this model as seen in Fig. 2).
nly the RE, MR and 2C models gave a satisfactory fit to the
ata, as can be seen by the residual plots shown in Fig. 4. This
gure presents the residual plots for each of these models for

he parameter set with the greatest likelihood. Included in each
esidual plot is a smoother to indicate any possible pattern in the
esiduals. Fig. 4 (base) illustrates the longer-term patterns in the
esiduals which are indicative of an inadequate model; whilst
ig. 4 (RE) and (MR) shows that the 20 annual recruitment
rror terms (process error) allow these models to adjust to fit the
attern in the residuals. Fig. 4 (2C) illustrates the residuals for the
ptimal 2C simulation that used a long-run cycle of recruitment
o fit the patterns within the residuals observed in Fig. 4 (base).
The decision analysis was conducted by projecting the results
resented in Table 2 into the future. Each of the models was
rojected forward 5 years and the posteriors of the management
ndicators were calculated (see Table 3). The median value of the

ive scenarios of future annual catch levels in tonnes per annum (t.p.a), over a

Scenario 3, 1750 t.p.a Scenario 4, 4000 t.p.a

0.96 (0.95, 0.97) 0.84 (0.80, 0.87)
0.96 (0.85, 1.07) 0.82 (0.70, 0.94)
0.97 (0.87, 1.09) 0.89 (0.78, 1.02)
1.19 (1.13, 1.24) 1.11 (1.04, 1.17)
1.11 (0.98, 1.21) 1.03 (0.88, 1.13)

n parentheses.
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ig. 3. Density plots of the prior (dashed line) and posterior (unbroken line) pro
omposite. The parameter or indicator represented is annotated in each sub-figu

arginal posterior pdf for each indicator is given along with the
rst and third quartiles. Scenarios 1 and 2 show that all models
redict stability in stock levels if catch levels are maintained at or
elow current levels. Scenarios 3 and 4 indicate that increasing
atch above current levels could lead to depletion of the stock
ithin 5 years.

. Discussion
The analysis presented here is relatively optimistic in regards
o the state of the eastern king prawn stocks in NSW. Although
ach of the four models examined provided differing results for

(
c
t
t

ity distributions of parameters and indicators from the Bayesian model average

he stock depletion ratio since 1984/1985, none of the models,
r the results from the Bayes model average, suggested that the
tock has been heavily depleted since 1984/1985. This result can
e contrasted with O’Neill et al. (2003) who, using non-Bayesian
aximum likelihood methods and a similar delay–difference
odel on the combined Queensland and NSW stock, obtained

omewhat different results. Under a range of assumptions for
arying fishing power and natural mortality rates, O’Neill et al.

2003) suggested a median depletion ratio of 0.3–0.7, with 90%
onfidence intervals encompassing the range 0.1–1.0. Rather
han using informative priors, O’Neill et al. (2003) used addi-
ional penalty functions on the likelihood function to prevent
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Fig. 4. Plots of the residual values between the observed and calculated CPUE values for each of the four models evaluated: base model; RE model; MR model;
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C model. In all cases, residuals from the simulation that resulted in the maxim
moother with 5 degrees of freedom. Tick marks indicate the midpoint (June) o

xtremely small or large harvest rates. Both modelling projects
ndicated significant uncertainties in the calculated biomass and,
n both cases, the lack of effective contrast in the catch and effort
ata was responsible.

The results of the decision analysis also appear positive.
he calculated biomass ratio between the years 2008/2009 and
984/1985 is around 1.0 for scenarios 1–3. If, however, the
epletion ratio (B04/B85) posterior pdfs are compared with the
osterior pdfs resulting from the projections used in the decision
nalysis it can seen that the posteriors for the MR and RE models
re considerably wider in the later projections. The posterior pdf
or B04/B85 lies within the lower half of estimated future deple-
ion ratio B09/B85. That is, 2003/2004 appears to have been a
articularly poor year for the stock (as was the year 1984/1985
r B85) but such low values still lie within the range of historical
ariability.

Although these modelling results suggest that stock levels
o not appear to be at high-risk in the near future, lower than
verage catch rates (such as those experienced in 2003/2004),

re possible. Also, if the 2C model has any credibility, the catch
ates may get worse before they improve as the long-run cycle is
et to reach its lowest point. Finally, the results of the decision
nalysis suggest that significant changes in the catch are not

t
v

v

og-likelihood are illustrated. Each residual plot also includes a cubic B-spline
abelled year.

xpected to have a large impact on the NSW catch rates or the
epletion ratio. This result must, however, be traced back to
he assumption of strong ongoing recruitment from Queensland.

change to the representation of recruitment has a significant
ffect on this model.

This analysis presents a straightforward application of
ayesian methods for stock assessment and decision analysis

or a penaeid fishery. The results illustrate a number of strengths
nd weaknesses of the approach. The primary strength was the
exibility of being able to define and calibrate models with
oth observation and process error. The primary weakness of
ayesian analysis for this case study was the necessity of using

nformative prior probability distributions to get usable results.
olutions were only found for our models using informative
riors that did not fully reflect our uncertainty about these param-
ters. In particular, for the SR and RE models we had to provide
he recruitment error terms with informative priors that were
ased upon an iterative process (Smith et al., 1987) (explained
n more detail in Appendix A). As this iterative process essen-

ially re-uses data, it is likely that the results underestimate the
ariance of the posterior pdfs.

In summary, the lack of contrast in the catch and effort obser-
ations forced us to point our Bayesian model in the “right
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irection” (using informative priors) to obtain a credible fit of
he models to the observations. Increasing the number of itera-
ions used in the SIR algorithm could, in theory, ameliorate this
ssue, but computational limitations prevented us from calculat-
ng more than 15 million replicates. Although we employed the

ethod of managing sampled parameter sets by storing only the
andom number seeds (McAllister and Ianelli, 1997), the models
till caused us to run into computational constraints using a fast
entium computer with 3 GB of random access memory. This
an be viewed as a limitation of the SIR methodology, and in
ur case, the use of joint prior pdfs as the importance function.
his result has practical implications for the use of such models

n fisheries management when there is so little effective contrast
n the observations.

One of the unavoidable issues resulting from the low con-
rast in the catch and effort data in this model was the inability
f any of the models to provide a credible estimate of abso-
ute biomass. The apparently tight posterior for B04 presented in
able 2 is a result of the restricted prior placed on B0. This
an be seen in the high density in the right tail of the pos-
erior for B0 shown in Fig. 3. Furthermore, the estimates of
bsolute biomass were highly correlated with the estimates of
atchability; reducing our confidence in both of these parameter
stimates. The inability to estimate absolute biomass is a prob-
em for many fish stocks, even those rich in observations, and
as led to a number of scientists cautioning against decisions or
ecision-making frameworks that require absolute estimates of
iomass (Hilborn, 2002). These results have shown that the level
f uncertainty surrounding management indicators based on rel-
tive biomass levels, such as the depletion ratio, is much less
han that associated with an estimate of the absolute exploitable
iomass.

The depletion ratio however is not without its problems as
management indicator. The depletion ratio provides insights

nto the sustainability of the species being examined but does
ot address the sustainability of by-catch species that are also
ffected by the fishery. This is a problem shared with other
ingle-species reference points such as maximum sustainable
ield (MSY) (Mace, 2001; Punt and Smith, 2001). As is the
ase with reference points such as MSY, the depletion ratio is
lso susceptible to natural fluctuations in stock size. The fact
hat the 2C model suggests that 2004/2005 biomass levels are
ell above 1984/1985 levels is an anomaly of the structure of

he model. This model has a long-run phase of around 11 years.
herefore, in order to compare two similar years, such as when
sing a depletion ratio, these two chosen years would have to be
1 or 22 years apart. This suggests a possible weakness in the
se of such a ratio for models with any long-run cyclic trends in
ecruitment.

Although the long-term recruitment cycle used in the 2C
odel has not been the subject of specific research for eastern

ing prawns, such long-run patterns in recruitment or ‘regime
hifts’ have been suggested for other fisheries (McAllister et al.,

001). There is evidence for a relationship between prawn catch-
bility and short-term rainfall events (Ruello, 1973; Glaister,
978, 1983) as well as prawn growth and water temperature
Somers, 1975 as cited in Glaister, 1983). This suggests the pos-

e
a
t
w
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ibility that long-term climatic patterns could explain some of
he long-run patterns found in catch records for this species—a
ossible avenue for future investigation.

The Bayesian approach appears to have been appropriate for
his study because the method allows the use of prior pdfs for

odel parameters. This enables existing research on the species
o be incorporated into the model calibration process. Such infor-

ation not only provides evidence for parameter values but also
aptures the uncertainty or variability in these parameter values.
ayesian methods also present us with a framework in which

o compare multiple model structures allowing us to deal with
he important issue of model uncertainty (Hilborn and Punt,
001). The research presented here aimed to determine the cur-
ent state and productivity of the NSW component of the eastern
ing prawn stock and analyse the consequences of varying com-
ercial catches into the future. To varying degrees of success,

oth of these aims were achieved, but only after significant lim-
tations of the modelling approach and underlying data were
dentified.

The sampling importance/resampling (SIR) algorithm
pplied here is a relatively simple and versatile Monte Carlo
ethod for use in fisheries assessment. However, the relatively

imple models used in our study uncovered some of the limits
f the SIR algorithm, as evidenced by our difficulty in find-
ng acceptable posteriors for the MR and RE models due to
he recruitment errors. The most obvious explanation for our
ifficulties was that our importance function, the joint model
riors, was inefficient (Chen et al., 2000). According to McAl-
ister (1997) this importance function works best when the data
re not very informative and the model is fairly simple—as
as the case with the base and 2C models. A number of alter-
ative approaches could have been employed including the
se of other importance functions, such as the multivariate t-
istribution (McAllister and Ianelli, 1997), or using alternative
ampling methods, such as adaptive importance sampling (Oh
nd Berger, 1992). Modifications to the maximum likelihood
stimation could also be applied (Chen and Andrew, 1998).
inally, SIR could be replaced with Markov Chain Monte Carlo
MCMC) methods which are more robust for large numbers of
arameters (Gelman et al., 2004). Inclusion of spatial processes
nd the length structure of the prawn population could increase
he biological resolution of the models, but at the expense of an
ncrease in the number of parameters. Incorporating the Queens-
and fishery would eliminate the need for an emigration term and

ay justify specification of a stock recruitment relationship (if
t exists).

There are also a number of avenues for further research into
lternative management strategies for this stock. For example,
imulation modelling could be utilised to evaluate the most effi-
ient avenues for further research, such as whether research
nto biological parameters would bear more fruit than con-
ucting independent surveys to provide an alternative index of
bundance. The model could also be expanded to include socio-

conomic components to consider the possible consequences of
lternative management strategies on the individuals and indus-
ries dependent upon the prawn stock. The recently published
ork of Holland et al. (2005) demonstrates the value of cou-
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ling such economic components to a Bayesian stock assessment
odel.
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ppendix A. Prior probability distribution functions

A number of distributions were used for prior pdfs. An expla-
ation for each is given below:

LN(μ, σ)—Log normal pdf: A lognormal distribution with
mean μ and standard deviation σ.
LU(min, max)—Log uniform pdf: A distribution which is uni-
form in a log scale between the minimum and maximum values.
For example, for the prior q ∼ LU(1 × 10−7, 1 × 10−5) p(q) is
uniform on log q from 1 × 10−7 to 1 × 10−5.
N(μ, σ)—Normal pdf: A normal distribution with a given mean
(μ) and standard deviation (σ).
U(min, max)—Uniform pdf: All values greater than or equal
to the minimum and less than or equal to the maximum value
have an equal probability.

rior probability distributions for the parameters used
n the models

0–Initial biomass

From annual catch levels we can be confident that the initial
iomass is at least greater than the highest annual catch recorded
ince 1984—around 1000 tonnes. A maximum catch level was
et at 20,000 tonnes which is about 20 times the largest recorded
atch value, i.e. B0 ∼ U(1000, 20,000). Note that the burn-in
hase, which can take up to 240 monthly time-steps, occurs
etween B0 and B85.

—Monthly change in catchability

This term represents the monthly change in average rela-
ive catchability or fishing power. Based on the work of O’Neill
2003, Table 6.4.4) fishing power in the east coast deep water
rawn trawl industry in Queensland has grown around 5.1%
ver the 11 years of 1989–1999 with a 95% confidence inter-
al from −0.9 to 11.0%. Converting this annual change to a

onthly timescale and converting the rate into the form used in
q. (9), this change in catchability is represented by a δ value
f 3.0 × 10−4. The prior applied to this parameter was normal
ith mean monthly catchability growth rate of 4.0 × 10−4 and

i
o
(
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tandard deviation of 3 × 10−4 that coincides with the confi-
ence intervals estimated in O’Neill et al. (2005). The estimates
rom the O’Neill et al. (2005) study were used as this fishery
ost closely resembled the NSW eastern king prawn fishery,

ut the estimates from other penaeid prawn fisheries (Wang and
ie, 1996; O’Neill et al., 2003) were also considered in the

ensitivity analysis δ ∼ N(4.0 × 10−4, 3 × 10−4).

—Emigration to Queensland

Although a number of tagging studies have demonstrated that
he NSW stock emigrates to Queensland in significant quantities
Lucas, 1974; Ruello, 1975; Glaister et al., 1987; Montgomery,
990; Gordon et al., 1995) very little information exists to pro-
ide a prior for this parameter. The only estimate that could
e found was from Lucas (1974) which estimated the instan-
aneous emigration rate out of Moreton Bay in Queensland at
.168 week−1. An uninformative prior of U(0.01, 1) was prob-
ematic for this parameter as such a prior could skew the results
n this study given that G and M play a similar role in all four

odels. The prior for this parameter was based on the tagging
tudies and subsequent compartmental model for eastern king
rawns developed by Gordon et al. (1995) which estimated emi-
ration up the NSW coast based on alternative values for M. The
rior for G was set accordingly at G ∼ LN(0.2, 0.3) with the
ean value translating into approximately 25% of the prawns
igrating out of NSW waters each month.

—Recruitment delay (months)

According to Gordon et al. (1995) eastern king prawns recruit
t 9–12 months, into the ocean fishery. Initially a discrete uni-
orm prior between 9 and 12 months was used, but this parameter
as found to have very little impact so was reduced to a constant
alue of 9 months for simplicity (i.e. k = 9).

—Monthly instantaneous natural mortality

Natural mortality includes all sources of mortality except
ecorded fishing mortality, but excludes emigration from the
ystem. Numerous studies have attempted to evaluate the natu-
al mortality rate for eastern king prawns. The most extensive
ork being Glaister (1983) who compiled estimations based on

atch rates, tagging studies, and even a meta-analysis of mortal-
ty rates of other penaeid species. Table A.1 provides a listing
f the estimates from each of the studies. These estimates were
ooled with greater weight given to estimates based on eastern
ing prawn, particularly in NSW waters. An informative prior
as generated in the following form: M ∼ LN(0.25, 0.3).

—Catchability
Informative bounds on this prior can be defined by recall-
ng U = qB and using the observed values of U and the mean
f the prior pdf for B0. The work of McAllister and Kirkwood
1998) and Punt and Hilborn (1997) suggested that a uniform
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Table A.1
Estimates of the instantaneous natural mortality rate (M) of eastern king prawns
(Melicertus plebejus)

Source M (month−1) Estimation method

Glaister (1983) 0.13 Applied Pauly (1978)
approach

Lucas (1974) 0.22 Evaluation of South East
Queensland stock from
tagging study

O’Neill et al. (2003) 0.2 From Lucas (1974) and
Garcia (1985)

Glaister (1983) LN(0.2, 0.5) Meta-analysis from other
penaeid species

Glaister et al. (1990) 0.27 Tagging study (1979) in
NSW waters

Glaister et al. (1990) 0.35 Tagging study (1980) in
NSW waters
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ordon et al. (1995) 0.29 Tagging study (1991, 1992)
in NSW waters

rior for q will bias initial biomass values due to the correlation
etween q and B0. Each author suggested that a more appro-
riate prior for q is uniform on log(q), i.e. q ∼ LU(1 × 10−7,
× 10−5).

ey—recruitment error for year y

Each of the 20 recruitment error terms were initially given
normal distribution with mean of 0 and standard deviation of
.2. Unfortunately, the RE and MR models that both use the
ecruitment error terms were unable to produce posterior dis-
ributions that met our posterior quality standards (in particular

IR < 0.005 and MSD < 1%). We therefore employed an itera-
ive process similar to that suggested by Smith et al. (1987). A
ull run (10 million iterations) of the SIR process was employed,
ollowing which the mean of the posterior pdfs for each of the
ecruitment error parameters was used as the prior for another
ull run of the SIR process, with the standard deviations of the
ecruitment error terms halved. The priors for each of the other
odel parameters were kept the same as they were in the first

ull run, with the only change between each full run being the
hanges to the recruitment error priors. Four full model runs were
ompleted at which point the quality of the posterior was found
o meet our posterior quality requirements. To test the validity
f this approach we examined the effect of the multiple runs on
he posterior of the non-recruitment error parameters. We found
hat the posteriors for the non-recruitment error parameters were
ot significantly altered (reduced) through the four full model
uns. Thus the initial priors for each of the recruitment error
arameters was rey ∼ N(0, 0.2) followed by rey ∼ N(run 1 rey

osterior mean, 0.1), rey ∼ N(run 2 rey posterior mean, 0.05),
nd rey ∼ N(run 3 rey posterior mean, 0.025).
—Ford-Walford plot slope

Using the age–length and length–weight relationships devel-
ped by Glaister (1983) averaged over both sexes and fitted to a
ord-Walford plot gave a range of ρ ∼ U(1.0, 1.1).

d
a
c
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—Standard deviation of observation error

The SIR algorithm could not find a satisfactory approxi-
ation for the posterior pdf of σ. Walters and Ludwig (1994)

resented an analytical method for calculating the marginal like-
ihood of σ but this was not applied in this study. A simpler
ption was used, where this parameter was treated as known
nd set to a value of 0.4 (which is the approximate maximum
ikelihood estimate given the range of calculated and observed
atch rates in our study). A similar approach was adopted by
cAllister and Kirkwood (1998) as a posterior for σ is rarely

eeded.

¯ k—Average prawn weight at recruitment

For the purposes of this study, recruitment into the fishery
ccurs when the prawns recruit to the ocean fishery. According
o Gordon et al. (1995) this occurs when the eastern king prawn
re around 25 mm carapace length, which is when the prawns
re around 0.01 kg (using the age–length and length–weight rela-
ionships developed by Glaister, 1983). Accordingly we chose
n informative log normal prior with a mean of 0.01 kg and a
oefficient of variation of 20%, i.e. w̄k ∼ LN(0.01, 0.002).

—Steepness of Beverton–Holt stock recruitment
elationship

The steepness of Beverton–Holt stock recruitment relation-
hip, z, represents the proportion of virgin stock recruitment
evels that will recruit if the current stock is at 20% of virgin
tock levels (Hilborn et al., 1994). A value of z closer to 1 means
hat recruitment levels are determined less by the current stock
ize and more by environmental conditions (or virgin recruit-
ent capacity). According to Glaister (1983) there appears to

e little or no evidence of a strong stock–recruitment relationship
or the eastern king prawn. This is possibly the case for many
rustacean species that are highly fecund and spawn in areas
here their larvae are dispersed over a large area of coastline
abitat (Schnute, 1985; Walters and Ludwig, 1994). In this case,
he stock recruitment relationship is also compromised because
f the likely southerly advection of larvae from Queensland.
onsequently for the base model and the RE model, both of
hich rely on local recruitment, we used an informed prior for z
etween 0.75 and 1 reflecting a belief that environmental condi-
ions play a large role in recruitment levels, i.e. z ∼ U(0.75, 1).
or the MR model and the 2C model where recruitment from
ueensland is regarded as a separate process error a prior that

llows z to take on any value over the allowable range was used,
.e. z ∼ U(0.2, 1.0).

q, θq and σq—Mean, slope and variance of the short-run
seasonal) catchability pattern
Based on an analysis of the seasonal cycle seen in the CPUE
ata and the explanation of recruitment cycles by Glaister (1983)
nd O’Neill et al. (2005) the short-run (seasonal) catchability
ycle occurs regularly over a 12-month period. The mean μq,
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hich determines the lowest point for the pattern, was found
o be the month of July (7) for the NSW eastern king prawns.
he priors for the slope θq and variance σq were then chosen

o cover ranges that provided an acceptable correspondence to
he observed data. In summary: μq = 7, θq ∼ U(1.45, 1.75) and
q ∼ U(6, 7).

Rf and LRp—Long-run (seasonal) recruitment cycle
requency (LRf) and phase (LRp)

Based on an analysis of the long-run cycle seen in the CPUE
ata the long-run recruitment was given an uninformative prior
or the phase of between 0 and π and a prior for the frequency
f between 40 and 45 month−1, which equates to a full long-run
ycle of between 10 and 12 years. In summary: LRp ∼ U(0, π);
Rf ∼ U(40, 45).

ensitivity of results to informative priors

A sensitivity analysis was conducted on both the MR and
C models to examine the consequences on the results of alter-
ng the informative priors for the parameters as described in
ppendix A. Parameter priors were altered one at a time and the

mpact on the depletion ratio posterior pdf examined. In some
ases the quality of the posterior was reduced (based on the cri-
eria discussed in Section 2). As expected, widening the priors
n the parameter B0 (initial biomass) had a significant effect on
04 but did not greatly affect the depletion ratio. Widening the
riors of other significant parameters such as G (emigration),

(natural mortality), q (catchability), and δ (annual catchabil-
ty growth) similarly did not significantly impact the depletion
atio but did affect the quality of the posterior (higher MIR and

SD values). Increasing the mean for δ to the highest levels
eported by O’Neill et al. (2003) decreased the depletion ratio
ut only by around 5%. Altering w̄k (average weight at recruit-
ent) appeared to directly affect the posteriors of the average

tock weight, mortality and emigration but not the depletion
atio.
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