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Abstract. The size, shape, and absorption coefficient of a microalgal cell determines, to a
first order approximation, the rate at which light is absorbed by the cell. The rate of absorption
determines the maximum amount of energy available for photosynthesis, and can be used to
calculate the attenuation of light through the water column, including the effect of packaging
pigments within discrete particles. In this paper, numerical approximations are made of the
mean absorption cross-section of randomly oriented cells, aA . The shapes investigated are
spheroids, rectangular prisms with a square base, cylinders, cones and double cones with
aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to
a modified sigmoid curve, and take advantage of three analytical solutions. The results are
presented in a non-dimensionalised format and are independent of size. A simple approxi-
mation using a rectangular hyperbolic curve is also given, and an approach for obtaining the
upper and lower bounds of aA for more complex shapes is outlined.

1. Introduction

Microalgae come in a wide range of shapes and sizes [4]. The effect of cell size and
shape on light absorption can be approximated using an absorption cross-section,
aA [7]. For a cell in an unidirectional incident light field, I , the average rate of light
absorbed by one cell, P , is given by:

P = aAI (1)

where the bar signifies the mean absorption cross-section over a random orientation.
A random orientation is investigated because microalgal cells in a turbulent fluid
are unable to orient themselves. The contribution of n cells per unit volume to the
attenuation coefficient of water per unit length is naA. The absorption cross-section
of cells over a random orientation is useful for calculations of light attenuation in
natural water bodies such as rivers, estuaries and the open ocean.

The rate at which a cell absorbs light affects the attenuation of light within
the water column in two ways. Firstly, the packaging of pigments within cells,
as opposed to an even distribution of dissolved pigment, reduces the rate of light
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attenuation. The larger the cells and the more concentrated the pigments are within
the cells, the greater the increase in light penetration. Secondly, since microalgae
have wavelength-dependent absorbance rates, the shape of the cells also alters the
colour of light as it is transmitted through the water column [6]. The inclusion of
these effects in models of light attenuation is important when correlating the rate
of light attenuation with chlorophyll or microalgal biomass [7].

For the sake of explanation, aA can be split into two separate variables, where
A(ψ, θ) is the cross-sectional area perpendicular to the light, or the projected area,
and a(l, t, ψ, θ) is the fraction of light absorbed for a particular pencil of light
through the shape (Figure 1). The projected area, A(ψ, θ), is a function of the ori-
entation of the shape, as specified by two orthogonal angles, ψ and θ . The fraction
of light absorbed, a, is a function of the orientation of the shape, and the particular
pencil of light, which is specified by coordinates l and t , and is given by:

a(l, t, ψ, θ) = 1 − eγCd(l,t,ψ,θ) (2)

where γC is the absorption coefficient, or absorbance per unit length of the light as
it travels through the shape, d(l, t, ψ, θ) is the distance the pencil takes through the
shape, γ is the pigment specific absorption coefficient, and C is the concentration
of the pigment within the cell. Both a and A vary with shape and orientation, and,
in general, a multiplied by A is not equal to aA. Therefore the results in this paper
are presented as aA, the mean absorption cross-section over a random orientation.

Analytical solutions for aA are available for a sphere, prolate and oblate spher-
oids, and an infinitely long cylinder [6], but are difficult to obtain for geometries in
which the whole surface of the shape is not defined by one co-ordinate. For exam-
ple, the surface of a sphere can be defined in spherical co-ordinates by setting the
radial co-ordinate to a constant value. In contrast, the surface of a cube is defined
by six different planes, which cannot be simply represented by one co-ordinate sys-
tem. Furthermore, while an analytical solution is known for spheroids, it involves
a computationally expensive triple integral, and has not been utilised as much as
might be expected.

In this paper, numerical approximations of the randomly oriented absorption
cross-section of spheroids, rectangular prisms with a square base, cylinders, cones
and double cones with aspect ratios, p, of 0.25, 0.5, 1, 2, and 4 are determined. The
shapes are all symmetrical about the horizontal plane and the aspect ratio is defined
as the height of the shape divided by the width or diameter in the symmetrical plane
(Figure 1).

2. Methods

The mean absorption cross-section is calculated based on the assumption that the
wavelength of light passing through the shape is small relative to pathlength through
the shape, and that the attenuating pigments are evenly distributed throughout the
shape. For the numerical calculations, the shape is rotated at an angle ψ around the
Z-axis, while light incident to the shape is rotated at an angle θ around the X-axis
(Figure 1). A random orientation is modelled by running a large number of simu-
lations, S, with the angles θ and ψ chosen randomly for each simulation [8]. ψ is
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Fig. 1. Schematic of the numerical simulations of the absorption cross-section of a rectan-
gular prism of aspect ratio p = h/w. Four pencils of light travel a distance d(l, t) through
the shape at an angle θ from the horizontal, while the shape is rotated in horizontal plane
by an angle ψ . The light pencils are separated by a distance �l and �t . The shape casts a
shadow, or projected area, of A.

given a uniform random distribution, while θ is based on the arccosine of a uniform
distribution. The skewed distribution of θ accounts for the greater likelihood of an
orientation with low values of θ , and is analogous to the greater distance between
lines of longitude on the Earth at low latitudes [2].

Light is modelled as a 2-dimensional array of light pencils. The array has co-
ordinates t and l, with a total of nt and nl pencils, each separated by a distance
�t and �l in the t and l directions. The array extends beyond the edges of the
shape in all directions. Each pencil of light is represented in parametric form, and
solved simultaneously with an equation representing each surface or plane of the
shape. The solution is an exact value (within software precision) for the entry and
exit co-ordinates of the pencil. The straight line distance between the entry and
exit co-ordinates is calculated for simulation s and pencil (l, t), as d(l, t, s). From
the numerical simulations, aA is approximated as the mean aA for S random
orientations:

aANS = 1

S

S∑

s=0

nl∑

l=0

nt∑

t=0

(
1 − e−γC d(l,t,s)

)
�l�t (3)

To ensure the light pencils completely surround the shape, a test for d(l, t, s) = 0
for all values of t = 0, l = 0, t = nt and l = nl can be undertaken. The results
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in this paper are based on a 500 × 500 array of light pencils and 200 random
orientations.

The results of simulations for a particular shape and range of absorbances are
used to determine the parameter values and undertake an error analysis for two
curves, a rectangular hyperbolic (RH) curve and a modified sigmoid (MS) curve,
that give aA as a function of γC . In both relationships, γC is multiplied by
rESR to give the non-dimensional quantity, γCrESR , where rESR is the radius of
a sphere with an equivalent volume. The use of γCrESR facilitates the compari-
son of results between different sizes, shapes and aspect ratios. Most importantly,
the results are independent of the size of the cell. Values of aANS at γCrESR =
0, 0.2, 0.4, ..., 4.6, 4.8, 5, 10, 15, 20 were obtained for each simulation.

The results of the numerical simulations are analysed in the context of three
useful analytical solutions:

1. The initial slope of the curve of aA against γCrESR for all shapes and orienta-
tions is given by:

lim
γC→0

d aA

d γCrESR
= 4

3
πr2

ESR (4)

This result can be shown for a rectangular prism 4πrESR/3 × rESR × rESR ,
with light pencils parallel to one of the rESR dimensions. For this shape, aA =
4πr2

ESR

(
1 − e−γCrESR)

)
/3 where A = 4πr2

ESR/3 and a is obtained from
Eq. 2. The differential of aA with respect to γCrESR as γC approaches zero
is 4πr2

ESR/3. At low γC, aA is equal for all shapes of equal volume at all
orientations [6], so Eq. 4 is true for all orientations of any shape.

2. For a randomly oriented convex shape the mean projected area, A, is given by
the total surface area divided by 4:

A = Surface Area

4
(5)

This result comes from the work of Cauchy [3] presented in 1832 [8].
3. The analytical solution of aA for a sphere of radius r is given by [5]:

aAsphere = πr2

(
1 − 2

(
1 − (1 + 2γCr) e−2γCr

)

(2γCr)2

)
(6)

Curve fitting. The RH curve of aA as a function of γCrESR is given by:

aARH = A γCrESR

3A
4πr2

ESR

+ γCrESR

(7)

In fact, the RH curve does not directly use the results of the numerical simulations.
Simply, it fits the RH curve to the analytical endpoints (Eqs. 4 & 5). Since no
parameters require fitting to numerical simulations, the RH curve can be used for
any convex shape for which the surface area is known. The results of the numerical
simulations are used to determine the accuracy of the RH curve for non-spheroidal
shapes.
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The MS curve takes advantage of all three analytical solutions. The results of
the numerical simulations are used to determine the fitted parameter, k, and to esti-
mate the maximum error in fitting the results of the numerical simulations to the
MS curve. The MS curve of aA as a function of γC is given by:

aAMS = aAsphere +
(
A− πr2

ESR

)
(γCrESR)

2

k2 + (γCrESR)
2 (8)

Eq. 8 is based on the addition of the analytical solution for a sphere of the same
volume, aAsphere (Eq. 6), and a sigmoid term. A sphere has the lowest aA for
any shape of the same volume. The sigmoid term is approximating the effect of the
non-spherical geometry of the shape. By building the solution on that of sphere,
Eq. 8 is taking advantage of the form of the analytical solution of the sphere. The
sigmoid term has a zero value at γC= 0, which gives the shape the same initial
slope of aA against γC , in agreement with Eq. 4, and a maximum of the difference
in mean projected area of the shape and a sphere of equivalent volume,A−πr2

ESR ,
so agreeing with Eq. 5.

Algal cells generally have a value of γCrESR of less than 5. The parameter k
is determined by the value which minimises the difference between the results of
the numerical simulations and the MS curve in the region γCrESR ≤ 5. Note that
even though the fit for k is undertaken for γCrESR ≤ 5, the value of aA at high
γCrESR is still constrained by the analytically determined value for A.

3. Error analysis

An initial assessment of the errors in the numerical approximation of aA can be
made by undertaking numerical calculations of volume and mean projected area. A
measure of the accuracy of the simulations in determining the average pathlength
of a light pencil through the shape, a critical component of the calculation of aA,
can be determined by numerically determining the volume of the shape. Using the
same techniques as for the calculation of aA, the volume is calculated as the sum
for each pencil of the multiple of the pathlength of the pencil through the shape,
d, and the area, �t�l, the pencil represents. The numerical approximation of the
volume of the shape for simulation s is given by:

VNS(s) =
nl∑

l=1

nt∑

t=1

(d (l, t, s) �t�l) , (9)

The error in the numerical approximation of volume is given by:

ENSV (s) = 100 |VNS(s)− V |
V

(10)

where V is the analytical solution for the volume of the shape. The error in calculat-
ing the distance d is based on software precision (for the Matlab software package
used software precision is 2−52). A limiting factor in the numerical estimation of
V (and hence in aA) is the number of pencils. The more pencils used, the better
the edges of the shape are resolved. For all cases presented in this paper, an array
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of 500 × 500 pencils of light was used and the resulting error, ENSV , for all shapes
and orientations was less than 0.5%.

At a high absorbance aA should converge on the analytically calculated mean
projected area for a randomly oriented shape, A, as given in Eq. 5. The error intro-
duced in the numerical integration of aA over a random orientation,EA, is measured
as the percent difference between the numerical approximation of aA at a very
high absorbance, aAγC→∞, and the analytical solution, A:

EA = 100

∣∣aAγC→∞ − A
∣∣

A
(11)

For spheroids, an analytical solution of aA as a function of γC, aAAS , is avail-
able [6]. Therefore, a direct determination of the percent error in the numerical
approximation of aA, aANS , at each of the values of γCrESR , can be determined.
The maximum error in aANS is given by:

EaA = 100 max

(∣∣aAAS − aANS
∣∣

aAAS

)
(12)

where the maximum function applies to the values of bracketed expression at val-
ues of γCrESR = 0, 0.2, ..., 4.8, 5, 10, 15, 20 and noting that the percent error is
always positive. Similar use of the maximum function over the range of γCrESR
values is made in Eqs. 13, 14, 15 and 16 below. Note that the analytical solution
is a triple integral, and must itself be evaluate using numerical techniques. The
Matlab adaptive Lobatto quadrature function with a tolerance 10−6 for each inte-
gration was used.EaA cannot be determined for non-spheroidal shapes, since there
are no analytical solutions for aA. Nonetheless, the results of EaA for spheroidal
shapes of a range of aspect ratios gives an indication of the corresponding values
for non-spheroidal shapes.

The numerical simulations are fitted to RH and MS curves. For spheroids, the
error in the curve approximating aA as a function of γCrESR is determined as the
maximum percent difference between the the curve fits and the analytical solutions:

EASMS = 100 max

(∣∣aAAS − aAMS
∣∣

aAAS

)
(13)

EASRH = 100 max

(∣∣aAAS − aARH
∣∣

aAAS

)
(14)

where the superscriptAS indicates that the analytical solution for aAhas been used,
and aAMS and aARH are the values of aA obtained using Eqs. 8 & 7 respectively.

For non-spheroids, where no analytical solutions are available, the maximum
error is determined as the maximum percent difference between the results of the
numerical simulations and the curve themselves:

ENSMS = 100 max

(∣∣aANS − aAMS
∣∣

aANS

)
(15)
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ENSRH = 100 max

(∣∣aANS − aARH
∣∣

aANS

)
(16)

where the superscript NS indicates that the numerical simulations have been used
to determine the error.

4. Results

Spheroids. The analytical solutions and numerical approximations of aA for an
oblate (p = 0.25) and prolate (p = 4) spheroid as a function of γCrESR are
graphed in Figure 2. Figure 2 also gives the percentage errors between the analyt-
ical solution and the numerical approximations. The maximum error between the
analytical solution and the numerical simulations for the prolate spheroid (atp = 4),
EaA, is 0.47% (Table 1). Only a small portion of this error, EA = 0.07%, can be
attributed to the integration over a random orientation. The maximum error in fitting
the numerical approximations to the MS curve, EASMS , is 0.74%, although a much
greater maximum error occurred when fitting to a RH curve, EASRH = 17.5%. The
aA for an oblate spheroid was less well approximated by the numerical approxima-
tions. In particular, the error in integrating over a random orientation is significantly
greater than for the prolate spheroid. Nonetheless, EaA, EA and EASMS were all 6%
or less for aspect ratios of 0.25 and 0.5. In general, the errors in the numerical
simulations, and in the MS curve fit are small, and give confidence in the curve fits
for non-spheroidal shapes, in which no analytical solution is available for a direct
measure of errors.
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Fig. 2. Analytical, numerical and curve fit results for an oblate and prolate spheroid of aspect
ratios 0.25 and 4 respectively. The fit to the MS curve for the prolate spheroid is obscured by
the analytical result. Note the magnitude of aA is different from Fig. 3. because spheroids
of smaller volume were used.
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Table 1. Data from the numerical simulations of the randomly oriented absorption cross-
section, aA, of spheroidal microalgal shapes at a range of aspect ratios. The spheroid is
defined on the left.A is the analytically determined projected area over a random orientation
as given by Eq. 5. k is the fitted parameter for the MS curve (Eq. 8). The right four columns
give result of the error analysis (for definitions ofEA,EaA,EAS

MS andEAS
RH see Error Analysis

section) .

shape aspect Errors%
ratio k simulations curve fit
h/2r EA EaA EAS

MS EAS
RH

0.25 0.5 6.0 1.59 4.11 20.1

0.5 1.8 0.54 0.54 0.23 17.8h

2r

2 1.6 0.02 0.39 0.14 18.3

spheroid 4 1.7 0.07 0.47 0.74 17.5

h/2r < 1 A = πhr

4

[
2r
h

+ h/2√
r2−h2/4

ln

(
r+

√
r2−h2/4
h/2

)]

h/2r > 1 A = πr

4

(
2r + h2√

h2−4r2
sin−1

√
h2−4r2

h

)

Prisms, cylinders and cones. Table 2 gives the results for k,EA,ENSMS andENSRH
for non-spherical shapes. As noted above, the results for non-spherical shapes have
no analytical solutions to be compared to (other than for A) so EMS and ERH are
based on aANS . The MS curve appears to well represent the numerical simulations,
with only the flattest cone (p = 0.25) having a maximum error greater than those
for the spheroids.

General comments on the effectiveness of light capture per unit volume of
different shapes are now possible. Figure 3 displays the MS curve fits for cells of
equal volume but varying shape and aspect ratio. The results illustrate that: (1) shape
dependent properties of light capture only become important for γCrESR > 1; (2)
for all shapes and absorbances, a shape with an aspect ratio of 1 is the least effec-
tive at capturing light; (3) that decreasing the aspect ratio (flattening the shape) is
more effective at increasing light capturing than increasing the aspect ratio (elon-
gating the shape); and (4) cones had the most pronounced increase in absorption
cross-section with decreasing aspect ratio.

The error analysis showed that the numerical simulations and the curve fits were
generally best at an aspect ratio of 1, worsening more as the shape becomes flatter
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Table 2. Data from the numerical simulations of the randomly oriented absorption cross-
section, aA, of non-spheroidal microalgal shapes at a range of aspect ratios. The shape is
defined on the left, with A, the analytically-determined projected area over a random orien-
tation as given by Eq. 5. k is the fitted parameter for the MS curve (Eq. 8). The right three
columns give result of the error analysis (for definitions of EA, ENS

MS and ENS
RH see Error

Analysis section).

shape aspect ratio Errors%
h/2r , h/w k simulations curve fit

EA ENS
MS ENS

RH

A = (2w + 4h)w/4

0.25 2.0 3.46 1.75 14.8

0.5 3.0 0.29 2.52 12.5

1 3.3 1.90 1.31 12.4

w

h

w

2 3.4 0.22 2.72 12.0

rectangular prism 4 2.4 0.77 3.24 12.8

A = πr (r + h) /2

0.25 2.0 2.01 1.50 14.7

0.5 2.5 2.39 1.23 14.8

1 3.1 1.51 0.82 15.0

2 r

h

2 2.1 1.45 1.23 15.9

short cylinder 4 1.7 0.34 1.41 16.9

A = πr

4

(
r + √

h2 + r2
)

0.25 3.8 2.23 7.61 2.17

0.5 2.9 2.12 2.80 9.37

1 3.1 0.53 1.84 12.3

2 r

h

2 2.4 0.58 1.57 14.0

cone 4 2.0 0.71 1.89 14.7

A = πr

2

√
h2

4 + r2

0.25 2.9 4.08 4.87 7.14

0.5 2.8 1.94 2.47 11.2

1 3.5 0.08 1.08 15.6

 2 r

h

2 2.5 0.25 0.84 16.5

double cone 4 2.0 0.22 1.31 15.5
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Fig. 3. The MS curve fit of the mean absorption cross-section, aAMS , of a spheroid, rect-
angular prism with a square based, cone, double cone and cylinder of volume 4π/3 (i.e.
rESR = 1) at aspect ratios, p, of 0.25, 0.5, 1, 2, 4 against the non-dimensional absorbance,
γCrESR .

when compared to becoming more elongated. This trend can be largely attributed to
the sensitivity of a flat object’s projected area to its orientation. It also appears that
the MS curve does not capture the underlying relationship between aA and γC as
well for a flat object as for an elongated shape. Surprisingly, a cone of p = 0.25 is
better fitted by the RH curve than the MS curve.

5. Discussion

The results of numerical simulations on spheroids, rectangular prisms with a square
based, cones and cylinders of aspect ratios 0.25, 0.5, 1, 2, 4 were fitted to two curves,
a MS curve and a RH curve. The error in the RH curve fit was always less than 21%,
and typical had values between 10 and 20%. The RH curve provides a reasonable fit
to any convex shapes for which the surface area is known. The MS curve provides
a much more accurate fit, with a maximum error always less than 8% and often
around 1%.

The results from this study are intended to fill a gap in the analytical solutions
for non-spheroidal shapes. When using these results, the source of errors in the
numerical approximations should be kept in mind. In particular, the random orien-
tation is modelled using a set of 200 random numbers. A different set of random
numbers is likely to produce slightly different results. Furthermore, the param-
eter k has been obtained to minimise the maximum percent difference between
the numerical simulations and MS curve for γCrESR ≤ 5. Another curve fitting
criteria may produce slightly different values of k. Nonetheless, the approach of
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undertaking numerical simulations and fitting these results to curves constrained
by analytical solutions has produced relatively small errors and fills a gap in the
available analytical solutions.

This study was motivated by a desire to obtain approximations of aA for a range
of shapes more representative of known microalgal cells than is provided by spher-
oids and infinitely long cylinders alone. Hillebrand et al. [4] has catagorized 850+
microalgal genera into 20 geometric models, with a small number of exceptions
and composite shapes (i.e. two ellipsoids). Of the 870 individual listings, the most
common shapes in decreasing order are prolate spheroids (157), cylinders (151),
spheres (141), elliptical prisms (112), ellipsoids (86), rectangular boxes (42), dou-
ble cones (30), and cones with a half sphere (24). Excluding the list of exceptions,
only 29 genera had shapes that were not defined by one of the Hillebrand’s standard
20 geometric models.

For shapes that do not have known analytical solutions or numerical approxima-
tions for aA, upper and lower bounds of the value aA may take can be determined.
The upper bound of aA of an unknown shape is given by the aA for a known shape
that surrounds the unknown shape. The lower bound is given by the aA of any
known shape that fits within the unknown shape. For example, a cylinder of radius
r and height h, with two half spheres on each end has an upper limit of a cylinder
of radius r , and height h+2r , and a lower limit of a spheroid of radius r and aspect
ratio of h+ 2r/2r . Similarly, the upper and lower bounds of other shapes defined
in Hillebrand et al. [4] can be determined: an ellipsoid by two spheroids; a cylinder
+ 2 cones by a cylinder and a prolate spheroid; and a cone + half sphere by a sphere
and a double cone. A rectangular box, a prism on an elliptic base, a prism on a
parallelogram-base, a half-elliptic prism and a prism on a triangle-base have upper
and lower bounds of two rectangular prisms with square bases. A pyramid can be
approximated by two cones. The difference between the upper and lower bounds
of these shapes will depend on the ratio of the different dimensions defining the
shape, but in general are not large.

Of the 20 geometrical shapes defined in Hillebrand et al. [4], only the sickle-
shaped prism (4 genera), the monoraphidioid (included as an exception only) and
the elliptic prism with a transapical constriction (no genera listed) are concave in
nature. In order to take advantage of Cauchy’s theorem (Eq. 5), the above analysis
has been restricted to convex shapes. In general, convex shapes provide poor upper
and lower bounds for concave shapes.

Some complex shapes such as the cymbelloid (11 genera listed), the elliptic
prism with transapical inflations (1) and the gomphonemoid (12) are convex, but
do not naturally fit the shapes given in this paper. A further 29 genera are either a
combination of shapes, or are a truncated shape, and are not necessarily bounded
well by numerical solutions in this paper. Nonetheless, the great majority of the
microalgal genera listed by Hillebrand et al. [4] have the same shape or are well
bounded by shapes for which numerical approximations are given in this paper.

In addition to being useful for modelling light attenuation through the water
column (as mentioned in the Introduction), the presented results can be used for
modelling light-limited microalgal growth. Under low light conditions, a photo-
synthetic cell is most efficient at using light that is absorbed. The initial slope of the
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growth versus irradiance curve, α, is proportional to aA [1]. The parameter α can
be approximated as α = mIaAI where mI is 8-10 times the carbon content of the
cell in moles, and I is specified as moles of photons per metre squared [1]. A com-
mon alternative formulation for light-limited growth involves using Monod growth
curves with fitted half-saturation constants. The use of a geometrically-determined
aA instead provides a physical bases for obtaining parameter values.

The numerical approximations presented in this paper may also be useful in the
automated identification of microalgae. Recent work has shown that the distribution
of the projected area of randomly oriented opaque particles can be used to identify
the three dimensional shape that produces the shadow [8]. It is also conceivable
that the results presented here may be useful for automated identification of algal
genus. Flow cytometry techniques use the alterations in a light field to identify
algal sizes. An improved consideration of the effects of microalgal shape on light
penetration, combined with a categorisation of algal genera into shapes such as
undertaken by Hillebrand et al. [4], may improve the capabilities of automated
identification techniques.

In summary, the results from this study expand our ability and ease of including
the effects of microalgal shape on an unidirectional light field, and has applications
in modelling of light limit algal growth, light attenuation in natural water bodies,
and in the automated identification of microalgal genus.
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