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A size-resolved pelagic ecosystem model has been developed based on a continu-
ous (with size) set of model equations and using allometric relationships to specify
size-dependent physiological rates. Numerical experiments with identical model
equations but different initial conditions and size-class distributions are used to
investigate inherent limits to prediction of instantaneous state from an initial con-
dition. The simulations have relatively constant physical forcings, such as solar
radiation, to emphasize the dynamical properties of the size-resolved model. Initial
condition experiments show that perturbations of 1, 0.1, 0.01, 0.001 and 0.0001%
of the initial biomass of individual size-classes from a flat size spectrum lead to
equal spread of model trajectories. The greatest divergence of trajectories occurs
when a 2.7 mm equivalent spherical radius phytoplankton size-class blooms. This
divergence has a finite-time Lyapunov exponent of 0.21 day21 and a prediction
time of 33 days for a precision of 1023 mol N m23. Large member ensembles can
approximately halve the effect of growth of initial condition perturbations on pre-
diction. Further numerical experiments are undertaken with the mean body
weight at which size-classes are solved perturbed randomly with a standard devi-
ation of 0.15, 0.015, 0.0015 and 0.00015 of the unperturbed body weight. The
greatest effect, which dominates the s ¼ 0.15 and 0.015 ensembles, occurs when
the perturbations of the size-class distribution add and/or remove predator–prey
links. These results provide a cautionary warning for the prediction of instan-
taneous states using complex pelagic ecosystems that are displaced from a stable
oscillation and for which biological state is not dominated by physical processes.

KEYWORDS: plankton; size; Lyapunov exponent; ensemble spread; initial con-
ditions; prediction

I N T RO D U C T I O N

Pelagic ecosystems consist of organisms with volumes
spanning 21 orders of magnitude. The distribution of
biomass across this size range has general trends
throughout the world’s oceans (Sheldon et al., 1972).
The size-structure of planktonic communities arises
from an interaction of size-dependent physiological
rates such as maximum growth rates (Tang, 1995) and
size-dependent planktonic interactions such as grazing
(Platt and Denman, 1977; Hansen et al., 1994; Kerr and

Dickie, 2001). A growing number of numerical model-
ling studies have set out to predict size-structure using
non-linear ecosystem models with size-based
formulations.

Prediction of non-linear phenomena has inherent
limits due to uncertainties in parameterizations, initial
conditions and forcing, among other factors. One
method to investigate limits to predictability is to show
divergence of simulations with differences that our
knowledge of the natural world cannot distinguish.
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Famously, Lorenz (Lorenz, 1965) found divergence of
model trajectories in a simple model of convection with
vanishingly small errors in initial conditions. On the
strength of these simulations, Lorenz (Lorenz, 1965)
stated that there is “little promise for forecasting instan-
taneous state [of weather] a month in advance”. One
simple experiment had revealed an inherent limit that
affects all attempts to predict weather. The rest of the
introduction introduces size-based models of pelagic
ecosystems, and the rationale for using idealized numeri-
cal experiments to investigate limits to prediction.

Size-based modelling of pelagic ecosystems

Size-based modelling generally involves quantifying the
biomass of a number of size-classes for a small number
of functional groups such as phytoplankton and zoo-
plankton. Following Moloney and Field (Moloney and
Field, 1991), size-based models have generally defined
one set of parameterizations for each group (Gin et al.,
1998; Armstrong, 1999; Baird and Suthers, 2007; Stock
et al., 2008). The coefficients for each size-class of these
parameterizations are typically obtained from allometric
relationships, of which a large number exists in the lit-
erature (Moloney and Field, 1989). This approach has
allowed the complexity of the models to increase in an
objective manner (Gin et al., 1998) providing an attrac-
tive method of increasing the sophistication of pelagic
ecosystem models. Along with plankton functional type
(Le Quere et al., 2005) and plankton trait-based
(Bruggeman and Kooijman, 2007) approaches, the size-
based framework is presently one of the most active
areas of research in plankton modelling.

One limitation to the ability of some size-based
models to explore size-based behaviour is the use of
food-web constructions that require modification to the
model formulation with changes in the number or dis-
tribution of size-classes. This may take the form, for
example, of an ecosystem structure where the smallest
zooplankton class consumes just the smallest phyto-
plankton class, the second smallest zooplankton class
consumes the second smallest phytoplankton class and
so on. If the number or distribution of size-classes is
altered, the model formulation must be changed, and it
will be expected that model behaviour will change.

To overcome this limitation, Baird and Suthers (Baird
and Suthers, 2007) developed a pelagic ecosystem model
(Fig. 1) that based the diet of a particular sized predator
on a size-based prey range. As the number of size-classes
increases, new links between predators and prey are
created without re-formulating the model. Figure 2A
shows the interacting size-classes of the model with 17
size-classes. Figure 2B shows the same interactions for a

62 size-class configuration that has approximately four
times more size-classes. As an example, the largest
phytoplankton size-class has three predators in the 17
size-class configuration, and 9 in the 62 size-class con-
figuration, but the two configurations are attempting to
resolve the same size-dependency. Baird and Suthers
(Baird and Suthers, 2007) refer to this approach as
size-resolved, to emphasize the independence of model
formulation on any particular choice of plankton size in
the model integration.

Formally, this approach is written down as a set of
continuous (with size) equations (Baird and Suthers,
2007). But to integrate the size-resolved model, the con-
tinuous model equations must be discretized, essentially
creating a size-based model with a particular choice of
plankton size and links. Thus, any one configuration of
the size-resolved model could have been developed
without using the continuous model equations, and
would be indistinguishable from the food-web formu-
lation critiqued above. In the size-resolved approach,
however, model configurations with different numbers
and distributions of size-classes can be compared with
an expectation that the only difference between model
behaviour is in the discretization and the links the dis-
cretization determines, and not in the model equations
or parameter values.

To this end, Baird and Suthers (Baird and Suthers,
2007) created five configurations of the size-resolved
model. Each functional group had the same smallest and
largest size-class, but the gap between size-class was pro-
gressively reduced as the configurations became more
resolved. Baird and Suthers (Baird and Suthers, 2007)
were able to demonstrate a convergence of model output
for increasing model resolution. Or more precisely, from
an identical initial state, simulations with higher resol-
ution diverge later (Fig. 3). Divergence from the 489 size-
class configuration occurs at approximately 40, 80, 120,
200 and 220 days for the 17, 32, 62, 123 and 245 size-
class configurations, respectively. The coarser model con-
figurations diverged from finer resolved ones not because
of a different understanding of the ecosystem, as speci-
fied by the continuous model equations and allometric
relationships, but due to differences in the numerical
implementation only. As such, any divergence of model
solutions represents inherent limits to the size-based
approach that cannot be overcome through improved
understanding of the natural ecosystem.

Limits to prediction in pelagic ecosystem
modelling

The use of idealized numerical experiments to place
limits on the predictability of pelagic ecosystems was
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motivated by groundbreaking research in the atmos-
pheric sciences undertaken 45 years ago. Inherent
limits to numerical weather forecasting were identified
early in the development of the field (Lorenz, 1963),
and have strongly influenced progress since. For a
simple deterministic non-linear model of thermally
forced (convection) rotating flow with small errors in
initial conditions, Lorenz (Lorenz, 1965) found diver-
gence of model trajectories. As quoted earlier, Lorenz

(Lorenz, 1965) used these experiments to demonstrate
an inherent limit to weather prediction. Lorenz’s
quote, which is now known to have been well placed,
is remarkable for two reasons. It is unlikely he could
have anticipated the enormous advances that have
occurred in the intervening 40þ years in the under-
standing of weather processes, the quality and quantity
of observations, as well as in numerical techniques
and computational power. Secondly, Lorenz’s model

Fig. 1. Schematic of the size-resolved biological model. The phytoplankton and protozoan groups divide, as represented by the arrow turned
on itself. Growth of individuals between metazoan size-classes is represented by dashed arrows, while spawning of eggs by metazoa is
represented by dot-dashed lines. All other lines are predation terms. In the top schematic, predation is limited to just two size-classes of
predators within each functional group, although the 62 size-class configuration typically has 9–11. In the lower schematic, all interactions are
given for the 8th phytoplankton class, 4th protozoan class and the 5th metazoan class in the 62 size-class configuration. The largest 15
metazoans have unresolved loss terms which are modelled implicitly using a quadratic loss term that returns nitrogen to the dissolved inorganic
nitrogen pool. From Baird and Suthers (2007).
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could not predict the weather. It only considered one
process, convection. Numerical experiments with an
idealized model alone can provide insights to predic-
tion limits for real world systems if the model captures

the most important non-linear processes with their
appropriate time-scales.

The investigation of divergence from an initial state
represents one limit to prediction. Perhaps the most

Fig. 2. Schematic of the processes linking size-classes for (A) the 17 size-class configuration and (B) the 62 size-class configuration. The x-axis
gives the size-class gaining biomass, and the y-axis (with equivalent spherical radii in mm) the size-class losing biomass. Processes resolved are
phytoplankton division (photosynthesis), grazing, individual growth by metazoans and egg spawning by metazoans. White boxes represent no
direct link between size-classes. Spawning appears in the top left half of the square as it is a transfer of biomass to smaller size-classes.
Photosynthesis (or phytoplankton growth) appears on the 1:1 line, as biomass is not transfer between size-classes. Grazing and individual growth
appear in the bottom right half as they move biomass to larger size-classes.

Fig. 3. (A) Total phytoplankton biomass, (B) total protozoan biomass and (C) total metazoan biomass for the 17, 32, 62, 123, 245 and 489
size-class configurations, adapted from Baird and Suthers (2007) and Baird and Suthers (2010).
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commonly pursued measures of pelagic ecosystem
models, and ecological models in general, are steady
states (Franks et al., 1986), steady oscillations (Edwards
and Brindley, 1996) or, in the case of chaotic systems,
attractors (Huisman and Weissing, 2001). The study of
divergence from an initial state is uncommon in the
ecological literature [an exception being Wilder (2001)],
but very common in weather prediction.

The importance of divergence of pelagic ecosystem
models from an initial state is likely to become more
important in the field of plankton modelling for a
number of reasons. First, pelagic ecosystem models are
increasingly being used to investigate changes on
shorter timescales than a steady state is achieved. This
is already true, for example, of models of a week to
month long coastal upwelling event (Baird et al., 2006),
an open ocean nutrient enrichment experiment (Chai
et al., 2007), or fish stock prediction for the coming
season (Brander, 2003). However, for complex ecosys-
tem models with long-lived predators, even multi-
decadal climate change projections starting at present
day initial states may be too short to establish a new
steady state.

Secondly, pelagic ecosystem models are routinely
coupled to physical models with weather-driven stochastic
forcings. These coupled models often assimilate obser-
vation of both physical and biological states (Fiechter and
Moore, 2009). The physical and even ecosystem states are
perturbed by the assimilation procedure in a non-
dynamical sense on regular intervals. Such model simu-
lations become a series of short-term forecasts, with sensi-
tivity to initial conditions becoming important. Thus
divergence from an initial state is an under-studied
phenomenon in ecological modelling and is particularly
relevant for complex pelagic ecosystem models.

The limits imposed on prediction of size-based
pelagic ecosystem models due to the number of size-
classes have already been studied (Baird and Suthers,
2007, 2010). In this paper, two further inherent limits to
modelling size-distributions in pelagic ecosystems are
investigated. First, initial condition perturbations are
investigated, with the approach of applying subtle
changes that are beyond our ability to determine which
is the more appropriate starting point. Secondly, Baird
and Suthers (Baird and Suthers, 2007) used size-classes
that increase in an exactly geometrical manner (e.g.
doubling of the mean body weight between size-classes).
In this paper, experiments are undertaken with a
random uniform distribution around the geometric pro-
gression. These subtle random changes to the discretiza-
tion represent an inherent limit to predictability because
we have no ability to distinguish which of the subtly
different size-distributions should be used.

In order to maximize the generality of the results pre-
sented here, the numerical experiments are undertaken
for an idealized surface mixed layer with gentle, repeti-
tive physical forcing. This provides an environment to
emphasize the dynamical properties of the size-resolved
model. Secondly, the initial conditions from which
divergence is assessed have a size-distribution equivalent
to a slope of the normalized biomass size spectrum
(NBSS) of 21. The NBSS is a histogram-style size-
distribution, in which the size axis is divided (normal-
ized) by the width of the size-class, such that the nor-
malized distribution is independent of the width of
size-classes (Platt and Denman, 1977). A NBSS of 21
represents equal biomass in geometrically increasing
size-classes and is considered a typical value for an oli-
gotrophic surface mixed layer (Sheldon et al., 1972). The
results presented may also be considered general
because the predator–prey interactions that are the
most significant non-linear processes in the pelagic eco-
system are parameterized with coefficients from com-
monly used allometric relationships (Tang, 1995;
Hansen et al., 1997). Thus, while the numerical exper-
iments undertaken might be considered just one
instance of one particular model, it is a model with
characteristics that are likely to be similar across a
broad range of size-based models, and is applied to a
generic environment.

In this paper, numerical experiments are undertaken
on identical formulations of the 62 size-class configur-
ation of the size-resolved model for a generic surface
mixed layer with tiny changes in size-discretization and
initial conditions. In both cases, these changes are suffi-
ciently small that it is not possible to distinguish, either
through observations of a natural ecosystem or refine-
ment of the size-based understanding, which model
configuration should be used for prediction. Thus, the
divergence of model trajectories with small pertur-
bations in initial conditions and size-class distributions
are used to illustrate inherent limits to prediction of the
size-distribution of pelagic ecosystems.

M E T H O D

Model description

Size-resolved biological model
The size-resolved pelagic ecosystem model contains
three functional groups: phytoplankton, protozoans
and metazoans, requiring three separately resolved
size-distributions. Four features of the size-resolved
model are of particular interest to the modelling of
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pelagic ecosystems: (i) physical descriptions of plank-
tonic interactions are used to explicitly represent the
size-dependencies of limiting physical processes to eco-
logical interactions. Physical descriptions include, for
example, calculating the encounter rates of predators
and prey based on the physical properties of the fluid
and the geometric properties of the organism
(Jackson, 1995); (ii) physiological rates are calculated
from allometric relationships found in the literature;
(iii) a distinction is made in the model between
animals that reproduce through division, the protozoa,
and those that grow between different life stages, the
metazoa (Fig. 1); and (iv) the diet of predators is
determined from a size-based prey range rather than
an a priori trophic structure.

The biological configuration is composed of 62
size-classes doubling in body weight between classes
and ranging in volume over 19 orders of magnitude.
This ranges from an equivalent spherical radius (ESR)
of 0.32 mm, representative of the cyanobacteria
Prochlorococcus sp., to a metazoan size-class with an
ESR of 78.8 cm. The phytoplankton size-classes
extend through the first 17 size-classes, protozoan size-
classes from the 9th to 21st and metazoan size-classes
from the 18th to 62nd. Initially each size-class has an
unperturbed biomass of 2.25 � 1025 mol N m23.
Mass moves between size-classes based on growth of
the phytoplankton population (creating organic matter
from inorganic constituents), grazing by protozoans
and metazoans, growth of individual metazoans from
one size-class to another and the spawning of eggs by
metazoans (Fig. 2B). Note that of the 752 ¼ 5625
possible interactions between size-classes, only 725
have a process (for more details, see Baird and
Suthers, 2007).

Mixed layer model
The size-resolved model is coupled to an idealized one-
dimensional mixed layer model that is forced by a sinu-
soidally oscillating wind with a strength varying
between 20.05 and 0.05 Pa over a 3-day period. The
vertical profile for vertical diffusivity, turbulent dissipa-
tion rate, solar radiation and wind-driven velocity over a
4-day period (200 days after the simulation begins) are
given in Fig. 1 of Baird and Suthers (Baird and Suthers,
2007). The wind-driven velocity induces a velocity shear
that affects the calculation of the turbulence state vari-
ables such as vertical diffusivity and turbulent dissipa-
tion rate, but there is no advection in the model. This
idealized physical environment is representative of a
stable mixed layer in a sub-tropical ocean gyre, and has
been used because, with no strong physical

disturbances, the behaviour of the ecosystem is deter-
mined primarily by the ecological interactions.

Experimental design

Experiments are undertaken in ensembles. Ensembles
are sets of experiments with small but well-defined
differences such as in the initial conditions or distri-
bution of size-classes. Other than the defined differ-
ences, the model simulations within an ensemble are
identical.

Initial condition perturbation experiments
Nine ensembles are undertaken with initial pertur-
bations of 1000, 100, 10, 101/2, 1, 0.1 0.01, 0.001 and
0.0001% of an unperturbed control. Each ensemble
consists of 76 members or runs: one member represents
an unperturbed control run and the remaining 75
members represent runs in which each phytoplankton,
protozoan and metazoan size-class in turn is perturbed.
In the perturbed simulations, the initial value of the
perturbed state variable is increased. So as to have the
same initial mass as the control run, the initial value of
the other 74 classes is decreased equally by a 1/74th of
the perturbation.

The regular perturbation strategy above allows dis-
cussion of the importance of the perturbation of par-
ticular size-classes. To ensure that the perturbation
experiments produce general results, three further
76-member ensembles were run with all size-classes
randomly perturbed in each member of the ensemble.
The perturbations in the three additional ensembles
fitted a random uniform distribution, and had average
initial perturbation magnitudes across all state vari-
ables approximately equal to 0.00004, 0.004 and
0.4% of the value of the state variable before pertur-
bation. For comparison with the regular perturbation
strategy described earlier, this is equivalent in terms of
ensemble spread to perturbing one state variable by
0.0003, 0.03 and 30%.

Size-class distribution perturbation experiments
Four 20-member ensembles are undertaken with the
mean body weight at which the size-classes are solved
are perturbed using a uniform random distribution
from the unperturbed size-class distribution. The mag-
nitude of the random perturbation is quantified as the
standard deviation of the unperturbed mean body
weight. Ensembles were undertaken with values of s ¼
0.15, 0.015, 0.0015 and 0.00015. A standard deviation
of 0.15 of the unperturbed mean body weight is suffi-
ciently small that the mean body weight of two adjacent
perturbed size-classes, m1,pert and m2,pert where
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m1,unpert , m2,unpert will always meet the criterion that
m1,pert , m2,pert.

The sizes of the smallest and largest phytoplankton,
protozoan and metazoan groups are unaltered, thus
ensuring that the model configurations are represen-
tations of the same system, albeit solved with a slightly
perturbed grid (size-class distribution). The initial con-
dition for all ensemble members is a NBSS of 21.0
before the random perturbation of the grid is
undertaken.

Measures of trajectory divergence

Local Lyapunov exponent
The Lyapunov exponent is a measure of the exponen-
tial rate of divergence of adjacent trajectories in a dyna-
mical system (Hilborn, 2000). Positive exponents at a
point in time imply there will be a growth of errors in
the estimate of the state of the system. If the exponent is
on average positive for the region of state space that the
system occupies then the system is chaotic. In this
paper, the Lyapunov exponent is calculated using the
distance, dj, between the control run and each ensemble
member j for each state variable n. The distance dj is
given by:

dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n¼1

ð f n
j � f n

0 Þ
2

vuut ð1Þ

where f 0
n and f j

n are the value of state variable n for the
control run and ensemble member j, respectively. The
Lyapunov exponent over a time period t1 to t2 for
ensemble member j is given by:

lj ¼
1

t2 � t1
ln

d j;t2

d j;t1

ð2Þ

In practice l is found by a least squares fit of the
natural logarithm of distance versus time between time
t1 and t2. The average Lyapunov exponent for a J-size
ensemble is given by:

lav ¼
1

J

XJ

j¼1

lj ð3Þ

In this paper, where simulations are short relative to the
potential time-scales of interactions between state vari-
ables, the Lyapunov exponents calculated are local or
finite-time exponents and do not consider a sufficient
region of the phase space to indicate whether the global
behaviour is chaotic.

Ensemble spread
Ensemble spread is a measure of the differences
between the members in an ensemble. In this paper,
ensemble spread is calculated as the standard deviation
of the distance (equation (1)) for all members in the
ensemble. To refine the analysis, some calculations of
ensemble spread use the distance between a subset of
state variables, such as single size-class or all phyto-
plankton. Such cases are explicitly stated. Otherwise,
ensemble spread is for all biological state variables.

Two measures of ensemble spread are used.
Ensemble spread from the control run (ESCR) and
ensemble spread from the ensemble mean (ESEM),
where the spread is calculated relative to the control
run and ensemble mean, respectively. These ideas are
discussed in the context of the more complex exercise of
numerical weather prediction in Buizza (Buizza, 1997)
and Buizza and Palmer (Buizza and Palmer, 1998). If
ESEM is approximately equal to ESCR, then simu-
lations on average diverge from the ensemble mean as
quickly as from a single simulation. Therefore, on
average, a single simulation will have the same growth
rate of initial condition errors as obtained using the
ensemble mean. If ESEM is less than ESCR, then on
average simulations diverge less from the ensemble
mean. In this case, the use of the ensemble mean
reduces the growth of initial condition errors compared
with a single simulation, and the ensemble framework
reduces the limit to prediction due to the growth of
initial condition errors.

R E S U LT S

The general nature of the size-resolved pelagic ecosys-
tem simulations in this paper are similar to the 62
size-class configuration simulation described in detail
in Baird and Suthers (Baird and Suthers, 2007), and
shown in Fig. 3 of this paper as a solid grey line.
Briefly, the simulations are begun with an equal
amount of biomass in each size-class within a func-
tional group. The physical forcing creates an environ-
ment similar to the surface mixed layer of a
sub-tropical gyre, with a relatively shallow mixed layer
and no seasonal cycle. Without strong physical pertur-
bations, the pelagic ecosystem model behaviour is
determined primarily by its own dynamical processes
rather than environmental perturbations. The domi-
nant oscillation in the model configuration considered
is between the phytoplankton size-class with an ESR
of 2.7 mm and its predators, which causes the period
of greatest divergence of trajectories at around Days
120–180.
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Sensitivity to initial condition perturbations

Sensitivity to the magnitude of the initial perturbation
Lorenz (Lorenz, 1969) first recognized that in a simple
atmospheric model after some finite time, the spread of
trajectories becomes independent of the magnitude of
initial condition perturbations. Figure 4 plots over time
the ESCR of the ensembles with initial perturbations of
1000, 100, 10, 101/2, 1, 0.1 0.01, 0.001 and 0.0001%
of an unperturbed control. After 20 days, the 0.1, 0.01,
0.001 and 0.0001% ensembles are within a factor of 2
(after starting three orders of magnitude apart) and are
approximately a factor of five greater than the initial
spread of the 0.1% ensemble. For a 20-day forecast, it is
therefore not possible to improve predictability by refin-
ing estimates of the initial conditions below 0.1%.
Similarly for a 130-day forecast, only 1% accuracy is
required to obtain maximum predictability.

Ensembles with uniform random perturbations of all
state variables of magnitudes of 0.0003, 0.03 and 30%
show similar behaviour to the regular perturbation strat-
egy (Fig. 4). In particular, randomly distributing a set
magnitude of perturbation across all state variables

results in a similar increase in ESCR with time as to
allocating the same magnitude perturbation to one
variable.

Rates of divergence
To illustrate the divergence of trajectories within an
ensemble, the distance between perturbed trajectories
and the control run for the 0.0001% perturbation
ensemble are given in Fig. 5. The rate of divergence
between trajectories varies over time with periods of
both growth and contraction, with divergence stabiliz-
ing after about 180 days. The average finite-time
Lyapunov exponent for 125–140 days, a period of sig-
nificant trajectory divergence, is 0.210 day21, corre-
sponding to a prediction time for a precision P ¼

1023 mol N m23 of 1/lav ln (1/P ) ¼ 33 day.
For the nine ensembles with magnitudes of initial

condition perturbations of 1000, 100, 10, 101/2, 1, 0.1
0.01, 0.001 and 0.0001% of the unperturbed control,
lav between 125 and 140 days is 0.210, 0.211, 0.215,
0.217, 0.198, 0.189, 0.169, 0.092 and 0.030 day21. For
the perturbations of 1, 101/2, 10, 100 and 1000%, the
initial conditions are sufficiently perturbed for the

Fig. 4. Ensemble spread from the control run (ESCR) due to a range of magnitudes of initial perturbations in the 76 member ensembles. The
magnitude of the initial condition perturbation can be either read from the legend (in percentage change), or from the value at time zero, when
the only spread is due the initial perturbation (in mol N m23). The 1000, 100, 10, 101/2, 1, 0.1, 0.01, 0.001 and 0.0001 ensembles have 75
perturbed members with each member containing one perturbed state variable. The 30, 0.03 and 0.0003 ensembles have 75 perturbed
members with each member composed of each state variable randomly perturbed.
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divergence of trajectories to begin saturating by Day
140. Saturation occurs because of a constraint on the
system, in this case, due to mass conservation. In con-
trast, for perturbations of 0.1% or less the finite-time

Lyapunov exponents are almost identical. In these
cases, the divergence of trajectories has not saturated
and the ensembles are indistinguishable because, as
seen earlier, the ensemble spread for perturbations of
0.1% or less after 125 days is independent of the mag-
nitude of the initial condition perturbation.

To understand the source of trajectory divergence
(and convergence), the contributions to divergence (and,
therefore, the Lyapunov exponent) of each state variable
can be quantified. Figure 6 gives the result for the
ensemble with a 0.1% initial condition perturbation.
Figure 6A shows the rate of divergence of diverging
size-class for Days 6–10 and 125–140. The size-classes
are quantified on the x-axis by their maximum growth
rate, as a means of comparing their potential for
growth driven divergence with the realized divergence.
In the case of large metazoans, divergence is above that
which could be achieved through growth. For these
large metazoans, the mechanism of divergence is differ-
ent rates of loss through grazing. Figure 6C shows the
rate of convergence of converging size-class.

With an inhomogeneous distribution of mass with
size, classes contribute unequally to divergence of the

Fig. 5. Calculation of the finite-time Lyapunov exponent (day21) for
members of the ensemble with 0.0001% perturbations in initial
conditions. The average finite-time Lyapunov exponent is calculated
for the shaded region between Days 125 and 140.

Fig. 6. The contribution to divergence (A and B) and convergence (C and D) of the phytoplankton (þ), protozoan (*) and metazoan (o)
size-classes during time periods 6–10 days (black symbols) and 125–140 days (grey symbols) for the 0.1% perturbation ensemble. The x-axis is
the maximum growth rate of the size-class, and the y-axis is the exponential rate of divergence (or convergence) of the size-class among
ensemble members (A and C) or the exponential rate normalized to the biomass of the size-class (B and D). Axes are log–log, with powers of 3
shown for reference. The black line is the 1:1 line for comparison of the maximum growth rate of a class with the realized divergence or
convergence. Points on the line have a divergence (or convergence) equal to the maximum growth rate.
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whole system. To account for this, Fig. 6B and D
display the divergence and convergence multiplied by
the mass fraction each size-class contributes to total
biomass. In the first time period (6–10 days), biomass is
fairly evenly distributed, and the shape of Fig. 6A
and C look similar to Fig. 6B and D. For the period
125–140 days, the distribution of biomass is signifi-
cantly altered. The classes with the highest normalized
divergence rates are the 2.7 mm ESR phytoplankton
size-class, and the three smallest protozoans. While
these size-classes have maximum growth rates of 1.8,
2.0, 1.8 and 1.6 day21, respectively, the overall diver-
gence of the system, as measured by the Lyapunov
exponent, is 0.21 day21. This is in part because these
classes are not reaching their maximum growth (and
therefore divergence) rates (Fig. 6A), because they make
up only a fraction of the biomass, and because some
other size-classes are converging (Fig. 6C and D). A
Lyapunov exponent of 0.21 day21 in a system with indi-
vidual components that have up to an order of magni-
tude greater exponential growth rates illustrates the
importance of negative feedbacks in pelagic ecosystems.

Comparison of ensemble spread from the control run and
ensemble mean
The ESCR and the ESEM between Days 120 to 180
for the nine magnitudes of initial condition pertur-
bations are given in Table I. Both ESCR and ESEM
are given for total biomass of phytoplankton, protozo-
ans and metazoans, and additionally for the 2.7 mm
ESR phytoplankton size-class and the 242 mm ESR
metazoan size-class. ESCR and ESEM are reported as
a percentage of the mean biomass of the category (e.g.
total phytoplankton biomass) during the same period.

ESCR is generally larger than ESEM for initial per-
turbations of �1%, and approximately equal for �10%
(Table I). For all ensembles of �1%, ESCR is approxi-
mately equal, as shown earlier in Fig. 4. The 101/2%
perturbation ensemble is between these two regions:
while ESCR is still greater than ESEM, ESCR has
become larger than for ensembles of �1%.

Table I also shows that ensemble spread (both ESCR
and ESEM) of total phytoplankton biomass is generally
less than that of the 2.7 mm ESR phytoplankton size-
class, and similarly ensemble spread of total metazoan
biomass is less than that of 242 mm ESR metazoan
size-class for all ensembles. The exception being for
phytoplankton in ensembles with initial condition
perturbations �1%.

Sensitivity of size-class distribution

The sensitivity to small perturbations in the size-class dis-
tribution (i.e. the mean body weights at which the model
is solved) provides an additional limit on the predictabil-
ity of the size-resolved model. If model trajectories with
small perturbations in the size-class distribution diverge,
then a limit exists to prediction based on a single simu-
lation because no single size-class distribution can be
said to better match the distribution of any natural
system for which the predictions are intended.

Perturbing the grid potentially changes the links
between size-classes (because diets are size-based), and
the allometrically determined physiological rates of indi-
vidual size-classes. The unaltered grid has 632 preda-
tor–prey links (Fig. 2). In the numerical experiments
undertaken, the grid was perturbed with a uniform
random distribution with standard deviations of s ¼

0.15, 0.015, 0.0015 and 0.00015 of the unperturbed

Table I: Ensemble spread from the control run (ESCR) and the ensemble spread from the ensemble mean
(ESEM) from Days 120–180 as a percentage of mean ensemble biomass for different magnitudes of
initial condition perturbations of the sum of all phytoplankton, protozoan and metazoan biomass, and for
the phytoplankton 2.7 mm ESR size-class and the metazoan 242 mm ESR size-class

Perturbation

Phytoplankton Protozoans Metazoans Phyto. 2.7 mm ESR Meta. 242 mm ESR

ESCR ESEM ESCR ESEM ESCR ESEM ESCR ESEM ESCR ESEM

1000 67.98 58.18 70.77 71.05 48.15 29.76 87.16 74.6 291.85 144.57
100 45.28 45.09 33.43 41.22 23.23 26.23 40.75 44.89 62.23 68.26
10 22.19 22.95 7.86 8.23 6.73 7.58 19.36 22.67 16.02 19.35
101/2 12.95 10 3.67 2.73 3 2.56 9.64 8.11 6.71 5.81
1 10.54 6.5 2.81 1.561.56 2.19 1.42 7.45 4.71 4.9 3.19
0.1 10.6 4.384.38 2.87 0.990.99 2.15 0.990.99 7.35 3.173.17 4.8 2.172.17
0.01 8.62 4.224.22 2.37 0.960.96 1.69 0.910.91 5.93 2.972.97 3.75 1.971.97
0.001 9.76 5.065.06 2.62 1.221.22 2 1.131.13 6.85 3.723.72 4.46 2.492.49
0.0001 10.08 6.19 2.72 1.551.55 2.15 1.45 7.22 4.76 4.78 3.24

Examples of ESEM that are ,60% of the ESCR are bold.
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mean body weight. For the ensembles undertaken, the
stagger of the grid can be seen in Fig. 7A, E, I, M,
respectively. The stagger of the grid for the 20 ensemble
members is obvious for the s ¼ 0.15 ensemble (Fig. 7A),
and just perceptible for the s ¼ 0.015 ensemble
(Fig. 7E). The stagger in the s ¼ 0.0015 and 0.0015
ensembles is vanishingly small, and not visible in Fig. 7I
and M, respectively. For the s ¼ 0.15, 0.015, 0.0015
and 0.00015 ensembles, the mean numbers of changes
in predator–prey links are 32+ 4, 2.4+ 1.1, 0.1+ 0.3
(i.e. two of the 20 members had one change) and no
changes, respectively. As an example of the effect of grid
perturbations on physiological rates of individual size-
classes, the maximum growth rates of phytoplankton
size-classes with an ESR of 2.7 mm for s ¼ 0.15, 0.015,
0.0015 and 0.00015 ensembles are on average changed
by 0.05, 0.004, 0.0005 and 0.00004 day21, respectively.

For the s ¼ 0.00015 ensemble (Fig. 7M–P), diver-
gence is only visible after 200 days. The divergence is a
result of changes in physiological and ecological rates of
individual size-classes only and is smaller than found
for even the smallest initial condition perturbations
above. For the 0.0015 ensemble, two members diverge

at around 80 days, while the remainder have only
slightly greater divergence than the s ¼ 0.00015
ensemble. The two divergent members are the only
cases in the 0.0015 ensemble that had random grid
perturbations that led to a change in predator–prey links.

The four ensembles show that increasing the grid per-
turbations causes larger divergence earlier, much in the
same way that coarser model configurations diverge
earlier. Perturbations with a standard deviation s ¼ 0.15
of the mean body weight are less than either the natural
variability in size of any particular population of unicel-
lular plankton, or our ability to measure the mean size of
a population. The s ¼ 0.15 ensemble suggests that
single simulations of greater than 80 days of the 62 size-
class configuration have limited predictive capabilities.

D I S C U S S I O N

Model simplifications and predictability

As with all numerical ecosystem models, the
size-resolved model is an abstraction of the

Fig. 7. Sensitivity to size-class distribution. The mean body weight at which size-class are solved is perturbed using a uniform random
distribution from the unperturbed size-distribution with a standard deviation of 0.15 (A–D), 0.015 (E–H), 0.0015 (I–L) and 0.00015 (M–P).
Panels (A), (E), (I) and (M) show the perturbed grid for protozoans for each of member (a row) of the 20 member ensembles (giving a total of 20
rows per panel). The remaining panels show the sum of biomass of the phytoplankton, protozoan and metazoan groups for each trajectory in
the ensemble. A colour version is available in the Supplementary Data.
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natural system. Compared with other modelling
approaches commonly used, the size-resolved model
does not consider functional groups within the phyto-
plankton and zooplankton (Le Quere et al., 2005),
simple behaviours such as vertical migration (Ross and
Sharples, 2007), three-dimensional circulation (Baird
et al., 2006) or traits within functional groups (Follows
et al., 2007). Beyond these considerations, Armstrong
(Armstrong, 1999) discussed potentially stabilizing pro-
cesses that are typically not included in size-based
models. Ecological processes Armstrong identified (his
list was not meant to be exhaustive) included production
of resting stages, mixotrophy and putative killing of
diatoms by flagellate bacterivores. As Armstrong
(Armstrong, 1999) points out, simple models can have
unstable behaviours that, perhaps surprisingly, are
damped or eliminated in more complex models.

Another important simplification in the size-resolved
modelling approach is the assumption that size-
distribution of mean body weight can be dissected into
every smaller size-classes, as demonstrated by the 489
size-class configuration. There is evidence to suggest
that natural systems are often composed of a small
number of discrete size-classes (Schwinghamer, 1981).
An enclosed lake with a small number of species is one
such example, while the open ocean tends towards less
discrete size-classes (Sheldon et al., 1972). This issue is
discussed at length in Baird and Suthers (Baird and
Suthers, 2010).

For this paper, the most important simplifications are
those that affect the divergence of an ecosystem state.
The lesson from Lorenz’s work is that divergence can
be estimated if the most relevant processes are con-
sidered. Present weather models contain many compli-
cated atmospheric chemistry processes that were not
part of Lorenz’s convection model, but Lorenz’s con-
clusions on limits to prediction were nevertheless useful.
In the size-resolved model, it is predator–prey inter-
actions that most affect divergence. On this basis, sim-
plifications of the food-web, such as the omission of
mixotrophy discussed by Armstrong (Armstrong, 1999),
are the most likely to affect the generality of the con-
clusions of this study. Thus, this study provides caution-
ary findings for the application of other size-based
models, and indeed any complex food-web ecosystem
models.

In pelagic ecosystems, the dominant non-linear pro-
cesses are predator–prey interactions, with size being a
first-order determinant of their rates. Thus, as long as
the predator–prey equations, allometric coefficients and
initial conditions are reasonable representations of the
pelagic ecosystems, divergence in the size-resolved
model trajectories due to tiny grid and initial condition

perturbations can be used as measures of inherent
limits to prediction that are unlikely to be overcome
through improved understanding, observations, numeri-
cal techniques or computing power.

Sensitivity to magnitude of initial
perturbation

Lorenz (Lorenz, 1969) first investigated the sensitivity of
an atmospheric model to varying magnitudes of initial
condition perturbations. He found at small pertur-
bations, the spread of model trajectories became inde-
pendent of the magnitude of initial condition
perturbation. He concluded that a deterministic system
that behaved in this manner would be observationally
indistinguishable from a stochastic one. In practice, this
behaviour implies there is no accuracy of initial con-
ditions that would increase predictive skill beyond some
time. This provides the limit of the predictability of the
model given near-perfect initial condition estimates.

The reason that there is similar spread of ensembles
with small, but different, magnitudes of initial pertur-
bations was explained by Lorenz (Lorenz, 1969) for the
atmosphere and hypothesized to apply to plankton by
Platt et al. (Platt et al., 1977). Consider the atmosphere.
At the smallest temporal and spatial scales, differences
between two states may double in 5 min, while
large-scale differences may take 5 days to double.
Reducing the difference between two almost identical
simulations by a factor of 2 reduces the time to get to
the original difference by 5 min. Thus, halving an
already small initial condition error increases the pre-
diction time by 5 min, not 5 days. In the pelagic ecosys-
tem, the doubling time of large scale differences in state
is say 0.21 day21 (the Lyapunov exponent calculated
earlier). The fastest growth rates of individual plankton
have doubling times of say 2 day21. Grazing could
exceed the fastest rate of growth, and does for larger
organisms, but does not for the fastest growing organ-
ism (Fig. 6). So a reasonable doubling rate for small
differences in model state is 2 day21. Thus, using a rate
of growth of errors of 2 day21, a reduction in errors of
an order of magnitude (as shown in Fig. 4) only
increases the prediction time by (ln 10)/2¼1.15 days,
which becomes indiscernible at 50 days.

Figure 4 demonstrates that for an initial spread of less
than 1028 mol N m23, the spread at 40 days is indepen-
dent of the magnitude of the perturbation of initial con-
ditions. To put this into perspective, for a 2 km �
2 km � 50 m grid box [typical of a regional ocean appli-
cation in the oligotrophic ocean such as that off southeast
Australia (Baird et al., 2006)], 1028 mol N m23 rep-
resents one additional 1 kg fish (in a total population of
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1000 at that size-class), or 1015 individuals of the
0.32 mm radius phytoplankton, representative of
Prochlorococcus. An analog of the butterfly effect (Hilborn,
2004) in the atmospheric sciences can be made: the
addition of one Prochlorococcus individual in the model will
“cause” as large a divergence in the trajectories after 40
days as one less fish caught by an angler.

Ensemble prediction of pelagic ecosystems

Ensemble prediction systems (EPSs) in weather forecast-
ing have been developed to overcome a component of
the inherent limits to prediction caused by initial con-
dition errors in single simulation predictions (Palmer and
Hagedorn, 2006). The measures of ensemble spread can
be used to assess whether such systems will improve pre-
dictability of the size-resolved model. Table I showed
that for a particular period of the simulation and for
initial perturbations of 1% or less, the ESEM of the
model was less than the ESCR. That is, the error
between a range of feasible model trajectories was less
using an ensemble mean than the control run. In these
cases, EPSs have advantages over single run simulations.
For initial condition perturbations of 10% or more,
ESCR and ESEM are of a similar magnitude, suggesting
that the ensemble mean is no better at minimizing the
effect of initial condition errors than a single control run,
and an EPS will not increase predictive skill.

The change in usefulness of EPSs at between 1 and
10% occurs at the same magnitude as the shift between
an independence and dependence of trajectory spread
on the magnitude of initial condition perturbations. An
EPS system is useful in improving skill when it is the
inherent non-linearities of the model that determine the
spread of trajectories. But when the trajectory diver-
gence is dependent on the magnitude of the initial con-
dition perturbation, an EPS is less useful.

It is unlikely that initial conditions for a size-resolved
pelagic ecosystem model will be known to a greater
than 1% accuracy, so it is unlikely that an EPS system
will in practice overcome an inherent limit to prediction
in pelagic ecosystems. However, EPSs have been devel-
oped with more sophisticated initial condition pertur-
bation schemes than used in this study, such as the
singular vectors used by the European Centre for
Medium-Range Weather Forecasts or the bred vectors of
the National Centre for Environmental Prediction
(Buizza, 2006). Additionally, at different locations in the
phase space, the model’s predictive behaviour will
change, much like weather being more predictable
during stable than unstable conditions. Nonetheless, it is
most likely that a month-time scale predictive skill of the
size-resolved model will not be improved by an EPS.

While an EPS may not improve the predictive skill of
a forecast, it does allow a forecast of the skill of a fore-
cast. In meteorological modelling applications, this
often justifies the use of an EPS. In this paper, it has
been shown how an ensemble has improved our
understanding of model behaviour for the case of a
2.7 mm ESR phytoplankton bloom after 120 days.
Regular implementation of an EPS system will allow for
similar understanding for whatever system state is
simulated.

Effect of long-term steady states and strong
physical forcings on predictability

The present study has focused on the short-term behav-
iour of the size-resolved model with weak forcing begin-
ning from an initial state with equal biomass in all
geometrically increasing size-classes (a NBSS of -1); a
reasonable but non-steady state for the system. To put
these results in context, a further ensemble of the
size-resolved model has been run with strong physical
forcing for 200 years. The intention is not to exhaus-
tively analyse the new results, but use them to highlight
behaviour in the weakly forced short-duration runs.

A 20-member ensemble of the 17 size-class configur-
ation [Baird and Suthers (2007), computing resources
requiring the coarser resolution] was run for 200 years,
with annual cycles of surface wind, solar forcing and
ocean state typical of the Southern Ocean south of
Tasmania (Fig. 8). Ensemble members were perturbed
using initial conditions described in the Experimental
Design.

The 20 members follow similar trajectories for about
10 years before visibly diverging (Fig. 8). For the next
140 years, periods of divergence and convergence
occurred. Regime changes are also evident at �100
and �150 years as some size-classes reach vanishingly
small biomass, and the longer time-scales of larger size-
classes have a top down effect. After 150 years, consist-
ent seasonal oscillations are evident, although the exact
oscillation still depends on the initial conditions.

Although this paper has highlighted limits to predict-
ability of instantaneous states in short time periods,
there remains oscillatory behaviour that is predictable
on longer time scales. Interestingly, divergence and con-
vergence of ensemble members occurs through an
annual cycle even though a stable oscillation has been
reached. Divergence begins in spring and continues
through until autumn. During winter, the ensemble
members converge. As with the weather/climate system,
it is clear there are different prediction time-scales for
instantaneous states and mean conditions.
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Other studies of dynamical behaviour of
size-based plankton models

The first published comprehensive size-based plankton
model (Moloney and Field, 1991) included numerical
experiments to investigate the effect of initial conditions
on simulations. The study looked for changes in ecosystem
behaviour due to significant initial condition pertur-
bations, rather than divergence of simulations with small
perturbations. The Moloney and Field (Moloney and
Field, 1991) experiments highlighted the importance of
seed populations in model simulations. Armstrong
(Armstrong, 1999) furthered the work of Moloney and
Field (Moloney and Field, 1991) by considering the effects
of model structure on the stability of size-based plankton
models. Initially Armstrong (Armstrong, 1999) investigated
the Moloney and Field (Moloney and Field, 1991) struc-
ture of couplets of phytoplankton and grazers, which he
found to be relatively unstable. Armstrong (Armstrong,
1999) then considered one herbivore grazing on a
number of phytoplankton. The distribution of grazing
pressure is a stabilizing influence, allowing realistic size-
spectra of phytoplankton to emerge. The size-resolving
model presented here has distributed grazing for both
phytoplankton and zooplankton and appears to be more
stable than the Moloney and Field (Moloney and Field,
1991) model that has very fast predator–prey oscillations.

Although these studies are not directly comparable to
the results presented in this paper, they provide a remin-
der of the range of dynamical phenomena that can be
investigated in ecosystem models, from initial condition
and model structure sensitivity considered here, to sensi-
tivity to forcing functions, parameter values and func-
tional forms. While this analysis has focused on
divergence from an initial state, other analyses could
consider changes in steady state, limit cycles or attrac-
tors, or the transition between these global behaviours.
The focus in this paper has been to identify, through
numerical experiments, inherent limits to prediction of
instantaneous states. Further work should be undertaken
to identify long-term behaviour of the size-resolved
model for a range of forcing functions.

Summary

Ensemble simulations of a size-resolved pelagic ecosys-
tem model have been undertaken to better understand
model behaviour, and estimate inherent limits to the
prediction of instantaneous states of a size-based rep-
resentation of a pelagic ecosystem. Ensembles have
been formulated with identical model equations and
parameter values, with tiny perturbations in the discreti-
zation of size-classes and the precision of the estimate of

Fig. 8. Ensemble spread and phytoplankton biomass for 20 members of a 200-year ensemble simulation of the 17 size-class configuration with
strong seasonal forcing. The 20 members are differentiated by small perturbations in initial conditions. The black line plots ensemble spread
calculated from all biological state variables. The grey (colour in the Supplementary Data) lines are total phytoplankton biomass. The right
panel focuses on years 200–204 when a stable annual oscillation has been reached.
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initial conditions. These variations are sufficiently small
that no foreseeable improvements in the specification of
size-classes or initial conditions could distinguish which
ensemble members are a better forecast. Thus diver-
gence in ensemble members is a measure of an inherent
limit to prediction. For the size-resolved model, the
ensembles with small variations in initial conditions
illustrate that after 50 days, no improvements of initial
state beyond a 1% error improves model predictions.
The ensemble with s ¼ 0.15 perturbations in the distri-
bution of size-classes diverges significantly after 80 days,
illustrating a second limit to prediction. This work pro-
vides a cautionary warning for size-based models of
pelagic ecosystems. Propagation of initial condition
errors and divergence of configurations with small
differences in plankton size suggest that prediction of
instantaneous states of the size-distribution of pelagic
ecosystem is possible for a month or two, but may not
be accurate for longer.
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tem. Helgoländ. Wiss. Meer., 30, 575–581.

Platt, T., Denman, K. L. and Jassby, A. D. (1977) Modeling the
productivity of phytoplankton. The Seas: Ideas and Observations on

Progress in the Study of the Seas. Vol. VI. John Wiley, New York,
pp. 807–856.

Ross, O. and Sharples, J. (2007) Phytoplankton motility and the com-
petition for nutrients in the thermocline. Mar. Ecol. Prog. Ser., 347,
21–38.

Schwinghamer, P. (1981) Characteristic size distributions of integral
benthic communities. Can. J. Fish. Aquat. Sci, 38, 1255–1263.

Sheldon, R. W., Prakash, A. and Sutcliffe, W. H. (1972) The size dis-
tribution of particles in the ocean. Limnol. Oceanogr., 17, 327–340.

Stock, C. A., Powell, T. M. and Levin, S. A. (2008) Bottom–up and
top–down forcing in a simple size-structured plankton dynamics
model. J. Mar. Syst., 74, 134–152.

Tang, E. P. Y. (1995) The allometry of algal growth rates. J. Plankton

Res., 17, 1325–1335.

Wilder, J. W. (2001) Effect of initial condition sensitivity and chaotic
transients on predicting future outbreaks of gypsy moths. Ecol. Mod.,
136, 49–66.

JOURNAL OF PLANKTON RESEARCH j VOLUME 32 j NUMBER 8 j PAGES 1131–1146 j 2010

1146



Copyright of Journal of Plankton Research is the property of Oxford University Press / UK and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


