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ABSTRACT

Defining the oceanic habitats of migratory marine
species is important for both single species and ecosys-
tem-based fisheries management, particularly when
the distribution of these habitats vary temporally. This
can be achieved using species distribution models that
include physical environmental predictors. In the pre-
sent study, species distribution models that describe
the seasonal habitats of two pelagic fish (dolphinfish,
Coryphaena hippurus and yellowtail kingfish, Seriola
lalandi), are developed using 19 yr of presence-only
data from a recreational angler-based catch-and-re-
lease fishing programme. A Poisson point process
model within a generalized additive modelling frame-
work was used to determine the species distributions
off the east coast of Australia as a function of several
oceanographic covariates. This modelling framework
uses presence-only data to determine the intensity of
fish (fish km�2), rather than a probability of fish pres-
ence. Sea surface temperature (SST), sea level anom-
aly, SST frontal index and eddy kinetic energy were
significant environmental predictors for both dolphin-
fish and kingfish distributions. Models for both species

indicate a greater fish intensity off the east Australian
coast during summer and autumn in response to the
regional oceanography, namely shelf incursions by the
East Australian Current. This study provides a frame-
work for using presence-only recreational fisheries data
to create species distribution models that can con-
tribute to the future dynamic spatial management of
pelagic fisheries.

Key words: fishery-dependent data, generalized addi-
tive mixed-effects model, point process model, recre-
ational fisheries, species distribution model

INTRODUCTION

Species distribution models (SDMs) are tools for
describing the environmental requirements of species,
and for understanding how species may respond to a
changing environment. For the last two decades,
SDMs have been widely used in examining spatial pat-
terns of terrestrial species (Ferrier et al., 2004; Hernan-
dez et al., 2006), but there has been limited use of
SDMs in the marine environment (i.e. Maxwell et al.,
2009; Robinson et al., 2011; Mellin et al., 2012). The
application of SDMs to marine migratory species is
challenging owing to spatiotemporal complexity in
species occurrence (Elith and Leathwick, 2009), onto-
genetic shifts in habitat (Einum et al., 2006), and,
shifts in phenological events (Neeman et al., 2015).
This challenge is enhanced in the pelagic domain,
where obtaining occurrence data for pelagic species is
restricted by the logistical difficulties of sampling
across large and remote spatial areas, as well as imper-
fect detections of species (MacKenzie et al., 2002;
Kaschner et al., 2006).

Species occurrence data are frequently presented as
time-space locations, where the presence location of a
species is recorded, without comparable records of
where the species is absent. Such data are termed ‘pres-
ence-only’ or a ‘point event’. Fisheries catch records
represent a useful species occurrence data source for
populating SDMs, especially in environments that are
generally poorly sampled, such as pelagic systems
(Hobday, 2010; Robinson et al., 2011). Catch records
can be obtained from commercial fishing vessels, and,
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from recreational fishers in the form of cooperative
tagging programmes. Fishery catch records are no dif-
ferent from typical presence-only data. However,
recreational catch records differ from commercial
catch records in that they commonly do not have mea-
sures of fishing effort. In the past, this has limited the
use of such data in habitat suitability descriptions.
Commercial catch records that have associated esti-
mates of fishing effort have previously been used in
producing SDMs for migratory marine species (Kasch-
ner et al., 2011; Jones et al., 2012; Sequeira et al.,
2014). Few studies have used data from catch-and-re-
lease tagging programmes, which mostly rely on the
voluntary efforts of recreational anglers to generate
species point events. Nevertheless, these catch-and-re-
lease programmes can provide important sources of
long-term presence-only data sampled from a broad
geographical space for many pelagic fish and sharks
(Casey and Kohler, 1992; Lucy and Davy, 2000;
Domeier and Speare, 2012).

Presence-only data are widely used in SDMs and an
extensive range of analytical approaches for presence-
only analysis have been proposed (Elith et al., 2006;
Phillips et al., 2009; Barbet-Massin et al., 2012). The
most common approach to analysing presence-only
data is to estimate the probability of species presence
by characterizing the environment through the ran-
dom generation of pseudo-absences or ‘background
points’. The primary issue with this approach is that
there is no robust way to assess the location, or num-
ber, of pseudo-absence points that should be gener-
ated, which can lead to issues in model specification,
interpretation and implementation (Warton and
Shepherd, 2010). Recently, point process models
(PPMs) have been proposed as a technique for analys-
ing presence-only data (Warton and Shepherd, 2010;
Chakraborty et al., 2011; Aarts et al., 2012). For
PPMs, the presence-only data are modelled as the
intensity of species (individual per unit area) as a
proxy for relative abundance, rather than a probability
of presence (which is the case in logistic regression).
This method solves the pseudo-absence selection prob-
lem by creating a framework in which to choose the
location and number of pseudo-absences based on log-
likelihood (Warton and Shepherd, 2010). The appli-
cation of PPMs is relatively new to species distribution
modelling but is effective in choosing pseudo-absence
points and, in typical examples, is equivalent with
MAXENT (Renner and Warton, 2013) and pseudo-
absence logistic regression (Warton and Shepherd,
2010).

A second issue with presence-only data is that they
are commonly subject to bias because the observers

that record the data are more likely to sample at some
sites compared with others (i.e., fishing hot-spots).
This sampling bias can also be related to accessibility,
which, in the marine system, is related to the location
of access points (boat ramps and marinas) and boat
power. Such biases are a common problem in pres-
ence-only data, but can be accounted for by integrat-
ing the known biases as a covariate in SDMs (Warton
et al., 2013).

The goal of this study was to create a species distri-
bution model for migratory marine species using data
from a recreational fisheries tagging programme. Here
the application of modern SDM methods was used to
describe the oceanic habitats of two pelagic fish, dol-
phinfish (Coryphaena hippurus) and yellowtail kingfish
(Seriola lalandi), off the east coast of Australia. The
study region is oceanographically dynamic, dominated
by an oligotrophic, poleward flowing western boundary
current, the East Australia Current (EAC; Ridgway
et al., 2008; Suthers et al., 2011). In this region, both
dolphinfish and kingfish are major recreational species
and commonly targeted in catch-and-release fishing,
resulting in a large database of catch-and-release
records (Gillanders et al., 2001). These species act as
comparative case studies for SDMs as they often
occupy different pelagic habitats; dolphinfish being
epipelagic (Oxenford and Hunte, 1999; Dempster,
2004; Young et al., 2010) and kingfish reef-associated
pelagic habitats where they have strong associations
with near-shore topographic features (Dempster and
Kingsford, 2003; Hobday and Campbell, 2009). The
specific aims of this study were to: (i) create and evalu-
ate SDMs for dolphinfish and yellowtail kingfish; and
ii) explore the seasonal oceanographic variation on
the distribution of these species, as a prelude to under-
standing habitat use in eastern Australia.

METHODS

Recreational fisheries data

Presence-only data for both dolphinfish and kingfish
were obtained from a cooperative recreational fisheries
catch-and-release programme facilitated by the New
South Wales Department of Primary Industries. These
data consist of angler-recorded locations of fish cap-
tures. The data were spatially confined to New South
Wales (NSW; 28°S–37.5°S; Fig. 1), Australia, and
temporally limited from 1994 to 2012 to match the
availability of a range of satellite-derived environmen-
tal predictors. There was no information on fishing
effort in these data, so to reduce any bias and autocor-
relation structure in the data we undertook two steps.
First, only data representing the first fish captured on a
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unique day and location were included to satisfy the
assumption of independence between presence points.
Second, only catch records from continental shelf
waters (< 200 m isobath) were included as this is
where the majority of fishing occurs (Steffe et al.,
1996).

Environmental covariates

Physical environmental covariates were collated for
both presence and pseudo-absence points, sourced
using the Spatial Dynamics Ocean Data Explorer
(Hartog and Hobday, 2011) and are: (i) sea surface
temperature 3-day composite from AVHRR (SST;
°C; 0.2° spatial resolution); (ii) sea level anomaly
from a gridded product of Maps of Sea Level Anomaly
from Topex/Poseidon and ERS-1 (SLA; m; 0.4° spa-
tial resolution); (iii) eddy kinetic energy derived from
altimetry (EKE; m2 s�2; 0.2° spatial resolution); and
(iv) the frontal index derived from daily SST image
analysis as the number of temperature fronts in each
pixel over an 8-day period (FI; Hobday and Hartog,
2014). To account for coastal shading in satellite-
derived products, all pixels and presence points at
< 40 m isobath were excluded from the analysis. Pre-
dictor covariates were examined for correlation using
pair plots and Pearson’s rank correlations. To avoid
collinearity, one covariate from covariate pairs with a
correlation > 0.5 and < �0.5 was removed from the
model selection process. An 8-day chlorophyll-a com-
posite from MODIS (L3 m) was removed owing to
correlation with SST, and a bathymetry product was
removed as a result of correlation with the ‘distance
to port’ covariate (see Table 1). All other covariates

available for model selection had low cross-correla-
tion scores.

The explanatory model

To predict the distributions of dolphinfish and king-
fish as a function of environmental covariates, a point
process model (PPM) was created for each species,
with the binary response variable composed of pres-
ence and pseudo-absence points. A PPM was imple-
mented using a down-weighted generalized additive
mixed-effects model (GAMM) with a Poisson distri-
bution and log link function using the ‘gamm4’ R
package (Wood and Scheipl, 2013) in the R program-
ming language (R Core Team, 2014), according to
Renner et al. (2015). The down-weighted approach,
known as a down-weighted Poisson regression
(DWPR), forces predicted probabilities of fish pres-
ence to be very small. The combination of this small
probability with a large number of point locations
(> 50) allows the Poisson distribution to approximate
the binomial distribution (presence versus pseudo-ab-
sence; Renner et al., 2015). This approximation
improves as the probability becomes smaller, and the
numbers larger. This equivalence between Poisson
PPM’s and binary logistic regression allows the PPM
intercept term to be estimated correctly within a gen-
eralized linear model framework. The down-weighting
is achieved by setting the weights for the presence
points equal to a small value (1 9 10�8), and weights
for the pseudo-absence points equal to the planimet-
ric area of the study region (35712 km2) divided by
the total number of pseudo-absence points. The fitted
values of the PPM are in units of fish intensity per
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Figure 1. (a) Map of the east coast of
Australia (inset) indicating the coastline
of New South Wales (NSW). Black cir-
cles indicate the presence points of dol-
phinfish within the 200-m isobath for the
period 1994 to 2012. Sea surface tempera-
ture (�C) climatology is shown, with col-
ours showing the average summer
temperatures, and the contours indicating
the location of the 19°C isotherm for
each season. (b) The NSW coastline with
black circles indicating the presence
points for yellowtail kingfish for the per-
iod 1994 to 2012. Sea level anomaly (m)
summer climatology is shown. The grey
line indicates the 200-m isobath.
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km2, which is a measure of a species’ relative abun-
dance (Renner et al., 2015).

The pseudo-absence points were randomly selected
within the same spatial and temporal confines as the
presence locations. The total number of pseudo-ab-
sence points included in the final model were chosen
using the PPM approach by generating multiple mod-
els with varying numbers of pseudo-absence points
(1000 to 40 000) and the number of points at which
the log-likelihoods converged was the number of
points used in the final models (Renner et al., 2015).
Based on this approach, 20 000 randomly generated
pseudo-absence points were used in the dolphinfish
and kingfish models.

The predictors available for model selection for
both dolphinfish and kingfish models were four envi-
ronmental covariates, a ‘distance to port’ covariate to
account for the observer bias of fishing effort (see
below), and calendar year (Year) as a random factor
to account for inter-annual variability in fish abun-
dance and fishing effort (Table 1). The body length
of the captured fish was not included in the model
because these data are biased as a result of sub-legal-
sized fish being more commonly released, and thus
recorded in catch-and-release fishing programmes,
compared with larger ‘trophy’ fish. To account for
observer bias of fishing effort in the fishery-dependent
data, the great circle distance from each presence
and pseudo-absence point to the closest port (i.e.
access point) was calculated using the spDists
function in the ‘sp’ package (Bivand et al., 2013).
‘Distance to port’ (Port; km) was included as a
covariate in the model to allow presence locations to
be modelled as a function of known observer bias in
addition to the environmental covariates (Warton
et al., 2013).

The full model available for model selection was:

Intensity ¼ s(SST)þ s(SLA)þ s(EKE)þ s(FI)

þ s(Port)þ Yearrandom
ð1Þ

Where intensity (fish km�2) is the relative abun-
dance of the species, s represents a penalized regression
spline type smoother based on generalized cross-vali-
dation (GCV). To avoid over-fitting, model covariates
were selected using an information theoretic approach
by comparison of a nested set of a priori parameter
combinations. If the estimated degrees of freedom
(edf) of a parameter in the full model (Eqn 1) was
close to one (indicating linearity) then the smoother
was removed prior to model selection. The model in
the set with the lowest Akaike information criterion
(AIC) was chosen as the final model.

Model evaluation

Model evaluation for individual dolphinfish and king-
fish models was done using cross-validation. This
involved k-folds partitioning, where presence data
were randomly partitioned into 10 equal subsamples
(k = 10) and the model trained on 9 of the subsamples
and tested against the 10th subsample. Each training
subsample was run with 20 000 randomly chosen
pseudo-absence points, and the testing subsample had
a 1 : 1 ratio of presence and pseudo-absence points.
The predictive power of each model was assessed by
computing a confusion matrix for each training and
testing combination using the evaluate function
in the ‘dismo’ package (Hijmans et al., 2013). The
mean Area Under the receiver-operating Curve
(AUC) and the mean True Skill Statistic (TSS) was
calculated from each confusion matrix. The AUC

Table 1. Summary of model covariates. The observed covariate range (presence and pseudo-absence) is provided for each
species, where DOL refers to dolphinfish, and YTK to kingfish.

Covariate Description Units Range

SST Sea surface temperature; 3-day composite from AVHRR. Spatial resolution 0.2°. °C DOL: 10–30
YTK: 12–29

SLA Sea level anomaly; from a gridded product of Maps of Sea Level Anomaly from
Topex/Poseidon and ERS-1. Spatial resolution 0.4°.

m DOL: �0.28–0.38
YTK: �0.25–0.37

EKE Eddy kinetic energy; derived from altimetry. Spatial resolution 0.2°. m2 s�2 DOL: 0–1.5
YTK: 0–1.1

FI Number of temperature fronts in each pixel over an 8-day period, derived from daily
sea surface temperature image analysis. Spatial resolution 0.4°.

DOL: 0–14
YTK: 0–10

Port Distance between presence point and nearest access port km DOL: 2–54
YTK: 1–40

Year Calendar year 1994–2012

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 24:5, 463–477.
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provides a single measure of overall model accuracy
that is threshold independent, with an AUC value of
0.5 indicating the prediction is as good as random,
whereas 1 indicates perfect prediction (Fielding and
Bell, 1997). AUC has been extensively used in SDM
modelling and measures the ability of the model to
correctly predict where a species is present or absent
(Elith et al., 2006). An AUC value of >0.75 is consid-
ered to have a good predictive power and is acceptable
for conservation planning (Pearce and Ferrier, 2000)
TSS is an alternative measure of model accuracy that
is threshold dependent and not affected by the size of
the validation set (Allouche et al., 2006). It is an
appropriate evaluative tool in cases where model pre-
dictions are formulated as presence–absence maps (Al-
louche et al., 2006). TSS is on a scale from �1 to +1,
with 0 representing no predictive skill and is calcu-
lated from the confusion matrix outputs of sensitivity
and specificity. Sensitivity is the rate of true positive
model predictions, and specificity is the rate of true
negative model predictions, with TSS equal to sensi-
tivity plus specificity minus 1 (i.e. TSS = sensitiv-
ity + specificity �1). Threshold dependent and
independent statistics, such as AUC and TSS, are used
in combination when evaluating the predictive power
of a SDM (Pearson et al., 2006).

Semi-variograms were created to examine any spa-
tial and temporal autocorrelation in the dolphinfish
and kingfish models. Semi-variograms relate the dis-
similarity of points (or semi-variance) to the spatial or
temporal distance that separates them. Data that are
randomly distributed has no change in variance across
distance and is considered uncorrelated. Semi-vari-
ograms were created using the variogram func-
tion in the ‘gstat’ package (Pebesma, 2004). Spatial
coordinates were used in creating spatial semi-vari-
ograms, with a cutoff distance set at 5°. The date of
fish catch was used in the temporal semi-variograms,
with a cutoff distance set at 5 days. The spatial and
temporal cut-off distances reflect the limit at which
autocorrelation was expected.

Predictions of distributions

The derived dolphinfish and kingfish models of fish
intensity were used to predict the seasonal distribution
of both species. Two metrics were used to visualize and
display the predicted seasonal distribution, the first is
spatial maps of fish intensity across the study area, and
the second, is a simplified line plot indicating the fish
intensity across a latitudinal scale. To predict on a sea-
sonal scale, the selected environmental covariates
(SST; SLA; EKE; FI) were averaged across each of the
four seasons from the period 1994–2012. Each

environmental covariate had been sampled at a differ-
ent resolution (Table 1), so all were interpolated to a
0.2° spatial resolution. The study area available for
dolphinfish predictions was extended east of the conti-
nental shelf to 156 °E, consistent with the wide distri-
bution of this species. While the model was trained on
data for the shallower waters of the continental shelf,
extending predictions is justified because of the epipe-
lagic nature of dolphinfish (Young et al., 2010). The
study area available for kingfish predictions was only
extended out to the 500-m isobath because kingfish
are linked with near-shelf topographic features (Hob-
day and Campbell, 2009). The ‘distance to port’ (Port)
covariate selected in both dolphinfish and kingfish
models is fixed at a constant value prior to prediction,
so that predictions correct for observer bias over the
entire study region (Warton et al., 2013). The alloca-
tion of a constant Port value will affect the predicted
distributions depending on which value is selected.
Thus, the chosen Port value for prediction was the dis-
tance that maximized fish intensity (13 km for dol-
phinfish, and 5 km for kingfish as determined from the
models).

The distributions of fish intensity were then pre-
dicted against the seasonal averages of environmental
covariates and the fixed Port value, using the
predict function of the ‘raster’ package
(Hijmans, 2014). The predicted distributions of fish
intensity were plotted as spatial maps for each season
and each species. The maps were then averaged zon-
ally (across longitude) to provide a line plot that indi-
cates the seasonal changes in fish intensity as a
function of latitude, which is the dominant axis of
variation owing to the influence of the East Australia
Current. The prediction methods in this section were
then repeated to determine a monthly prediction of
the distribution of dolphinfish and kingfish intensity.
Using the predicted line plots, the latitude at which
fish intensity is at a maximum is extracted and used to
create a climatology of the latitude where kingfish and
dolphinfish intensity is at a maximum.

RESULTS

Data

A total of 2122 and 1235 presence points, collected
over a 19-yr period, were included in the dolphinfish
and kingfish models, respectively. Presence points for
both species were concentrated in the central region
of the NSW coast and shared similar patchiness on the
northern and southern areas (Fig. 1). Kingfish pres-
ence points were < 40 km from any port, and this dis-
tance was consistent along the NSW coast.
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Dolphinfish points were < 54 km from any port, but
distances greater than 30 km occurred only between
latitudes 32.5 °S and 34 °S. The summer SST and
SLA climatology (Fig. 1) illustrates the typical sum-
mer oceanographic conditions off the east coast of
Australia. The 19 °C isotherm for each season
(Fig. 1a) illustrates the temporal variability in the
regional oceanography.

The explanatory model

All oceanographic covariates were retained in both
the dolphinfish and kingfish models (Table S1), which
suggested complex relationships between oceano-
graphic conditions and fish intensity. Smoothing fac-
tors were retained for all predictors in the dolphinfish
model, but smoothing factors for SLA and ‘distance to
port’ (Port) in the kingfish model were not retained in
the final model, in favour of linear terms for these
covariates (Table 2, Table S1). Spatial and temporal
semi-variograms revealed no autocorrelation in the
dolphinfish or kingfish models (Fig. S1). SST had a
strong influence on fish intensity, with the intensity of
dolphinfish peaking at ~24.5 °C (Fig. 2a) and kingfish
at ~22.5 °C (Fig. 3a). The optimum SLA for dolphin-
fish intensity plateaued between �0.13 and 0.28 m
SLA (Fig. 2b), and for kingfish a positive linear rela-
tionship with SLA was found (Table 2, Fig. 3d).
A similar pattern between fish intensity and the fron-
tal index (FI) occurred for both species, with intensity
highest at FI between 0 and 4, and decreasing at a FI
higher than 4 (Figs 2c and 3b). The fish intensity in

relation to eddy kinetic energy (EKE) differed between
species, with dolphinfish showing two peaks in inten-
sity at 0 and 0.8 m2 s�2 (Fig. 2d). Kingfish intensity
peaked at EKE of 0.16 m2 s�2 and steadily decreased
at EKE higher than this (Fig. 3c). The Port covariate
was strongly correlated with fish intensity in both
models, with an overall decrease in intensity with
increasing distance from ports. The Port covariate in
the kingfish model indicated a negative linear rela-
tionship (Table 1, Fig. 3e). The dolphinfish model
highlighted two distinct peaks in fish intensity, the
first at ~13 km from the nearest port and the next at
~38 km (Fig. 2e).

Predictions of distributions

The ability of both models to predict fish intensities
was good, with AUC values of 0.80 � 0.005 for dol-
phinfish, and 0.81 � 0.003 for kingfish (Table 2).The
TSS indicated a correlation between the predicted fish
intensity and the observed intensity, with a TSS value
of 0.50 � 0.015 for dolphinfish, and 0.51 � 0.01 for
kingfish (Table 2). The predicted spatial patterns of
fish intensity across each season demonstrated the
complexity of fish responses to oceanographic condi-
tions (Figs 4 and 5). Dolphinfish intensity along the
entire NSW coast increased during summer and
autumn. Kingfish intensity shifted south during sum-
mer and autumn, and to the north to subtropical
waters during spring and winter. The kingfish distribu-
tion plots also indicate a pattern of offshore movement
during the spring and winter months (Fig. 5). The

Table 2. Model results for dolphinfish and kingfish. A smoothing factor is indicated by ‘s’. The effective degrees of freedom
(edf) for smoothers; the coefficient estimates; P-values; the mean (�SD) Area Under the receiver-operating Curve (AUC)
statistic; and the mean (�SD) True Skill Statistic (TSS) are provided.

Species and covariate edf Estimate P AUC TSS

Dolphinfish
s(SST) 5.84 �0.5 <0.001
s(SLA) 8.17 1.16 <0.001
s(EKE) 5.30 �0.18 <0.001
s(FI) 5.38 �0.4 <0.001
s(Port) 8.44 �0.85 <0.001
Year (intercept) �4.22 <0.001

Full Model 0.80 � 0.005 0.50 � 0.015
Yellowtail kingfish
s(SST) 5.78 �0.26 <0.001
SLA 1.21 <0.01
s(EKE) 2.74 �0.4 0.001
s(FI) 4.34 �1.33 <0.001
Port �0.15 <0.001
Year (intercept) �3.70 <0.001

Full Model 0.81 � 0.003 0.51 � 0.01

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 24:5, 463–477.
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latitude at which fish intensity is at a maximum shows
a distinct annual cycle, where during summer months
the maximum fish intensity for both species moved
further south (Fig. 6).

DISCUSSION

These results highlight the strong relationship
between pelagic fish distributions and the ocean envi-
ronment. Both dolphinfish and kingfish off the east
Australian coast showed strong seasonal changes in
their distribution in response to the regional oceanog-
raphy. The complexities of the fish distributions are
evident from the shapes of the partial effect GAMM
plots, and the significance of all four environmental
covariates in the best model. The application of the
down-weighted Poisson regression approach was valu-
able in determining the number of pseudo-absences
for analysis, but this approach makes model validation
challenging. This study shows how presence-only fish-
ery-dependent data can be used in creating species

distribution models to describe the habitats and ecol-
ogy of pelagic species. The distribution models cre-
ated in this study have potential application for single
species and ecosystem-based management. For exam-
ple, these distributions could be used to manage
access to single species at certain times of the year, or
to reduce unwanted bycatch of these species when
seeking other target species (Hobday et al., 2010;
Baker and Hollowed, 2014). Managing recreational
fisheries has been traditionally difficult, and these
methods illustrate how data from such fishers can be
informative.

Environmental drivers of dolphinfish and kingfish
distributions

Identifying the environmental drivers of fish distribu-
tions gives insight into their physiological and ecologi-
cal requirements within pelagic systems. The
significance of the four environmental predictors
(SST; SLA; FI; EKE) indicates the importance of phys-
ical oceanographic variables influencing the
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Figure 2. Partial effect plots of each smoothed predictor in the dolphinfish model: (a) sea surface temperature (�C); (b) sea level
anomaly (m); (c) frontal index; (d) eddy kinetic energy (m2 s�2); (e) ‘distance to port’ (km). The y-axis values are the contribu-
tion of the smoother to the model’s fitted values. Dotted lines represent 95% confidence limits. Whiskers on the x-axis indicate
the data (presence and pseudo-absence data) for each predictor.
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distribution of dolphinfish and kingfish. The relation-
ships between fish intensity and SLA, FI and EKE
covariates are indicative of a preference of both species
for oceanographic fronts, compared with highly turbid
areas characterized by high FI and high EKE. Pelagic
species often aggregate in such oceanographic features,
which can enhance feeding opportunities, as shown
for tuna (Laurs et al., 1984; Fiedler and Bernard, 1987)
and swordfish (Podest�a et al., 1993), as a result of ele-
vated production and retention that can concentrate
prey (Scales et al., 2014). The results of this study are
consistent with those of Zainuddin et al. (2006) who
found that albacore (Thunnus alalunga) were more
abundant in frontal areas associated with anti-cyclonic
eddies. In contrast to this study, dolphinfish presence
along the U.S. East Coast was not related to SLA or
EKE, but highly correlated with SST and chlorophyll-
a (Farrell et al., 2014). This could be as a result of
differing oceanographic upwelling processes in the
studies (Cresswell, 1994). In the current study, the
EAC retroflects eastwards between 30 �S and 34 �S

(Godfrey et al., 1980) leaving behind a poleward flow-
ing eddy field (Ridgway and Godfrey, 1997; Everett
et al., 2012) that can produce productive fishing
grounds (Young et al., 2001, 2011) from elevated bio-
mass and secondary consumers such as zooplankton
(Everett et al., 2011) and larval fish (Mullaney and
Suthers, 2013). The signal of productive fishing
grounds may be indicated by SLA, EKE and FI, and
future work could focus on examining the relationships
between chlorophyll-a and fish intensity.

The energetic requirements of feeding are an
important driver of fish distributions (Golet et al.,
2013) but it is challenging to include such ecological
factors into an SDM. SST is one variable that is closely
linked with the physiological requirements of species
and their prey, which may be why this covariate had
the strongest relationship with fish intensity for both
species. The physiological limits of species are an
important driver in their pelagic distributions, and
thermal preferences have been identified using SDMs
for tunas (Arrizabalaga et al., 2015), whale sharks
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Figure 3. Partial effect plots of each smoothed predictor in the kingfish model: (a) sea surface temperature (�C); (b) frontal
index; (c) eddy kinetic energy (m2 s�2); and each linear predictor: (d) sea level anomaly (m); (e) ‘distance to port’ (km). The y-
axis values are the contribution of the smoother to the model’s fitted values. Dotted lines represent 95% confidence limits. Whis-
kers on the x-axis indicate the data (presence and pseudo-absence data) for each predictor.
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(Sequeira et al., 2014) and marlin (Su et al., 2011;
Lien et al., 2014).

The explanatory models in this study revealed that
SST is the factor driving most of the variation in habi-
tats occupied by dolphinfish and kingfish. Dolphinfish
intensity in this study peaked at 24.5 °C, which is con-
sistent with the 24 °C temperature at which dolphin-
fish commercial catch peaks on the U.S. East Coast
(Farrell et al., 2014). There is limited research on
kingfish ecology, but aquaculture-based research on
kingfish has revealed that the optimum rearing tem-
perature on the NSW coast is 22 °C (Fielder and
Heasman, 2011) which is consistent with the 22.5 °C
peak observed in this study. These differences in ther-
mal preferences may indicate niche segregation
between these two pelagic predators. The species dis-
tribution models presented in this study assumed phys-
ical environmental variables are the primary driver in
fish distributions, an assumption justified by the high
explanatory power of the models. To further improve

accuracy and predictive capacity, future research could
include other ecological descriptors, including species
(predator-prey) interactions, diets, energetics and
ontogenetic changes.

Catch-and-release data

This study successfully used a novel approach of utiliz-
ing fishery-dependent recreational angler catch data
for modelling the distributions of two pelagic fish spe-
cies. Previous distribution modelling approaches have
used commercial catch data with associated fishing
effort for determining dynamic ocean habitats (Hob-
day et al., 2011a), identifying tuna hot spots (Zainud-
din et al., 2006), forecasting tuna (Hobday et al.,
2011b) and shark habitats (Sequeira et al., 2014), as
well as spatial forecasts of catch per unit effort (Gla-
ser, 2011). In this study, the interpretation of results
must be approached cautiously and consider the scale
at which the oceanographic covariates were sampled.
To allow synoptic coverage over a long time period,

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Spatial prediction of dolphinfish intensity across four seasons: (a) spring, (b) summer, (c) autumn and (d) winter. Col-
ours represent the intensity of dolphinfish in number of fish km�2, and the grey line represents the 200 m isobath. Line plots
indicate average dolphinfish intensity against latitude (e) spring, (f) summer, (g) autumn and (h) winter.
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the oceanographic covariates were derived from satel-
lite measurements that limit the coverage closer to
the coast, where the majority of the fish presence-only

data were concentrated. This may result in reduced
confidence for the kingfish model as kingfish are often
associated with inshore coastal reef habitats on the
continental shelf, and hence are more frequently
caught in inshore areas. In contrast, dolphinfish occu-
pies the epipelagic zone and are regularly associated
with floating structures rather than reef habitats, thus,
in this study predictions were extended off the conti-
nental shelf. The potential issue for the kingfish
model was not reflected in the predictive power
(AUC and TSS) of the model as the predictive power
between dolphinfish and kingfish models was compa-
rable. SDMs that use data from inshore coastal areas
could be improved by ensuring that the environmen-
tal predictors have the best possible coverage of the
areas of interest. For angler-based tagging data, this
will most likely involve coastal regions where satellite
derived products are less reliable. In order to create a
realistic SDM for coastal areas, it is recommended
coupling satellite-derived products with other data
sources, such as those from long-term monitoring

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Spatial prediction of kingfish intensity across four seasons: (a) spring, (b) summer, (c) autumn and (d) winter. Colours
represent the intensity of kingfish in number of fish km�2, and the black line represents the 200-m isobath. Line plots indicate
average dolphinfish intensity against latitude (e) spring, (f) summer, (g) autumn and (h) winter.
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mum, across calendar month, predicted from years 1994 to
2012 (n = 19 yr).
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stations, ship data, and, coastal models (Holt et al.,
2009).

The fishery-dependent catch data in this study had
an unknown fishing effort and was spatially biased in
the way the data were collected. Correcting for such
biases in presence-only data can be attempted through
modifications to the model (Warton et al., 2013),
rather than biasing the way pseudo-absence points are
selected (Phillips et al., 2009; Syfert et al., 2013). In
this study, creating the Port covariate accounted for
sampling bias in the model estimates, with the results
indicating a general decrease in fish intensity with
increasing distance to the port. There were two dis-
tinct peaks in fish intensity in the dolphinfish model;
the first peak at 13 km from the nearest port and the
second at 38 km. The first peak is within the range of
moored Fish Aggregation Devices (FADs) that attract
fish for the purpose of increasing catch rates. These
FADs are placed between 9 and 28 km from the clos-
est port (mean of 16 km) and concentrate fishing
effort around these devices (Dempster, 2004). The spa-
tial dependence that FAD locations may have intro-
duced to the presence-only data was reduced by
removing duplicate fish catches for the same day and
location. Alternative approaches to dealing with spa-
tial dependence could be to use: spatial autocorrela-
tion terms; Gibbs processes that relaxes the
independence assumption by assuming interactions
between sets of points (Baddeley et al., 2013; Renner
et al., 2015); block resampling methods that divide
data into blocks to force approximate independence
between blocks (Slavich et al., 2014); and Cox pro-
cesses that provide a way of dealing with clustering
and the effects of unmeasured covariates (Møller et al.,
1998; Renner et al., 2015). The location of the second
peak in fish intensity revealed a localized pattern in
the data where, between 32.5 °S and 34 °S, fishing
catches extended out to ~54 km. This extension in
distance is as a result of increased population density
in this area that results in wider fishing grounds being
used, as well as a decreased density of available ports
between 32 °S to 34 °S.

Analysing presence-only data using Poisson point
process models (PPM) is a recent approach to SDMs
and provides an effective and simple method of choos-
ing the number of pseudo-absences needed for species
distribution modelling (Warton and Shepherd, 2010;
Aarts et al., 2012; Renner et al., 2015). The primary
limitation of this PPM approach is the reduced ability
to undertake model validation. This is because the
down-weighted Poisson regression (DWPR) approach
allows the GAMM to fit a PPM even although the
response variable is not a count. K-functions can be

used to check for clustering and spatial homogeneity
(Renner et al., 2015) but this adds a substantial level
of complexity to model validation. In comparison to
the widely used logistic regression approaches (Max-
well et al., 2009; Reglero et al., 2014; Sequeira et al.,
2014), PPMs change the response variable to a metric
of abundance rather than probability, and can thus
improve the biological interpretation of results. The
concepts of the PPM and the straightforward applica-
tion of the DWPR used in this study can be applied to
other pelagic species that are targeted by cooperative
tagging programmes, such as tunas, billfish, mackerels
and sharks. Other fishery-dependent and independent
data can also be used within the DWPR framework,
with model parameters modified to reflect the study
species. For example, including the surface area of
topographic features in the analysis may help to deter-
mine habitat preferences of demersal species that are
not related to oceanic conditions. Like any model that
generates spatial density estimates, application of the
DWPR across large spatial scales will need to ensure
that variation in grid size is taken into account. This
can be achieved by ensuring that the units of intensity
match whatever spatial units have been determined
after the projection of the coordinate system.

Implications for species management

SDMs in the marine environment are primarily used
for spatial conservation planning and management
(Crowder and Norse, 2008; Robinson et al., 2011),
including, marine park implementation (Leathwick
et al., 2008), single species fishery regulatory measures
(Murawski et al., 2000), as well as ecosystem-based
fisheries management (Maxwell et al., 2009). The
annual cycles of fish intensity modelled in this study
have implications for dolphinfish and kingfish fishery
management, where dynamic management strategies,
such as pelagic protected areas (Game et al., 2009)
may be effective. For example, both dolphinfish and
kingfish in New South Wales are targeted through a
recreational fisheries enhancement programme that
deploys artificial reefs (permanent deployments) and
Fish Aggregation Devices (FADs; seasonal deploy-
ments) to increase fishing opportunities in coastal
waters. By understanding the ecological drivers of dol-
phinfish and kingfish distributions, the deployment of
enhancement structures could be improved by imple-
menting a dynamic deployment approach. For exam-
ple, this could involve deploying fewer FADs in areas
where fish intensity is high, and more FADs in areas
where fish intensity is low (Sempo et al., 2013).

Knowledge of the ecological drivers of pelagic fish
distributions can enhance marine management
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strategies so they reflect the spatial and temporal
complexities of the pelagic environment and ensure
that conservation planning and management is based
on important marine features, rather than coinciden-
tal protection (Game et al., 2009). Seasonal maps and
climatologies of fish habitats, as presented in this
study, only represent a static illustration of past fish
events. While this is a useful tool, the next step in
marine conservation planning is dynamic spatial man-
agement of pelagic species (Hobday et al., 2014). This
can involve creating forecasts of fish distributions on
short timescales (weeks to months) that allow user
groups and management to adapt to spatial and tem-
poral variability in fish distributions (Hobday et al.,
2011b). Fish forecasts can also be created on long
timescales (years to decades) that can predict species
invasions (Lee et al., 2008), as well as fish distribu-
tions under climate change scenarios (Hartog et al.,
2011; Lenoir et al., 2011; Hobday et al., 2015). The
framework presented here for analysing presence-only
fishery-dependent data can potentially contribute to
the future development of SDMs both here and else-
where, as effective tools for the management of pela-
gic species.
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Figure S1. Semi-variograms of the residuals of the
dolphinfish and kingfish models. Spatial semi-vari-
ograms for dolphinfish (A) and kingfish (B) models
used spatial coordinates. Temporal semi-variograms
for dolphinfsh (C) and kingfish (D) models used the
fish catch date. x-axis distance units are in degrees for
spatial plots (A & C) and days for temporal plots (B &
D).

Table S1. Model selection results for dolphinfish
and kingfish. A smoothing factor is indicated by ‘s’.
The difference in Akaike Information Critera (AIC)
values and the corresponding weights for each model
is provided, with the best model indicated in bold.
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