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INTRODUCTION

Pelagic fish are often overlooked during the design
and implementation of marine protected areas (MPAs)
and during subsequent monitoring programs. How-
ever, increases in the biomass of carangids and other
large predatory fish have been reported in MPAs in
Hawaii and the Philippines (Russ & Alcala 1996,
Williams et al. 2006), suggesting that pelagic fish may
benefit from MPA protection. Designing MPAs to max-
imize protection for pelagic species, and monitoring

changes after implementation, requires knowledge of
pelagic distributions and habitat preferences. Con-
servation and monitoring programs based on accurate
survey data are becoming increasingly urgent, as
many pelagic species have experienced serious stock
declines (Cury et al. 2000, Myers & Worm 2003).

Pelagic fish behaviour presents difficulties for the
collection and interpretation of accurate survey data.
High spatial and temporal variability in pelagic fish
distribution and abundance means that traditional
fish survey techniques, when applied to pelagic fish
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assemblages, often yield patchy data, with many zeros
and limited statistical power (Edgar & Barrett 1999,
Kingsford 1999). Pelagic fish are also fast swimmers
that can avoid survey equipment including nets, boats
and SCUBA divers (Freon & Misund 1999, Misund et
al. 1999). As a result of these difficulties, pelagic fish
research is often reliant on fisheries data, with atten-
dant sampling biases (Gillanders et al. 2001). Fisheries
data are also inappropriate for studies in MPAs, where
fishing is often banned.

Baited remote underwater video (BRUV) has suc-
cessfully been used to survey fish assemblages in a
number of ecosystems, including shallow coastal reefs
(Ellis & DeMartini 1995, Babcock et al. 1999), continen-
tal slopes (Collins et al. 1999a, Speare et al. 2004) and
deep abyssal plains (Wilson & Smith 1984, Priede
& Merrett 1998). BRUV also shows potential to over-
come difficulties associated with surveying open-water
ecosystems, as pelagic fish have been observed during
benthic BRUV surveys (Jones et al. 2003, Cappo et al.
2004, Watson et al. 2005). The use of bait to attract fish
to survey gear overcomes problems associated with
gear avoidance, as most pelagic fish are opportunistic
predator/scavengers that respond to bait plumes (Boz-
zano & Sardà 2002, Jones et al. 2003). Using a remote
video system also eliminates problems of fish avoiding
or being attracted to the research vessel. BRUV has the
additional advantage of supplying behavioural data,
and insights into inter- or intra-specific interactions
(Bozzano & Sardà 2002, Jones et al. 2003, Collins et
al. 2005, Kemp et al. 2006), that may boost our under-
standing of the structure and function of pelagic
ecosystems.

Applying BRUV to mid-water environments requires
reconsideration of some of the assumptions in BRUV
studies. For example, many BRUV studies assume that
each deployment samples an equivalent area by either
ignoring water current speed, or by using the average
current speed from all deployments to estimate the
area sampled by each BRUV (e.g. Hill & Wassenberg
1999, Henriques et al. 2002, Jones et al. 2003). This
may be a reasonable assumption when baits are de-
ployed into the bottom layer where currents are
damped by frictional forces, but when baits are de-
ployed into mid-water environments or the surface
mixed layer, variable current speeds and turbulent
mixing will cause relatively large differences in the
area sampled by the bait plume in each BRUV deploy-
ment. In such environments it may be more realistic to
use in situ measurements of current speed for each
BRUV deployment and to include horizontal and/or
vertical mixing terms when estimating bait plume area
or volume (Sainte-Marie & Hargrave 1987).

We investigate how different assumptions about bait
plume dispersal affect estimates of pelagic fish abun-

dance and, particularly, how variations in current speed
can influence regional comparisons, assessments of
habitat preferences and MPA monitoring. We present
findings from mid-water BRUV sampling on the conti-
nental shelf around Lord Howe Island, a remote island
in the central Tasman Sea, east of Australia. The waters
surrounding this small volcanic island provide a rare
opportunity to investigate the ecology and behaviour
of pelagic fish assemblages, because large-scale com-
mercial fishing efforts targeting pelagic species have
always been absent from the region (NSW MPA 2000,
NSW DPI 2004). Of particular interest is the regional
abundance of tropical sharks, many species of which
have been subject to severe over-fishing throughout
their range (Ovetz 2006).

MATERIALS AND METHODS

Study site. Lord Howe Island is an isolated volcanic
island approximately 630 km east of Australia (31.5° S,
159.1° E; Fig. 1). The island is surrounded by continen-
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Fig. 1. Chart of Lord Howe Island and Balls Pyramid showing
marine park zoning and sampling regions: 1: Admiralty Is-
lands; 2: Red Point/Clear Place; 3: Wolf Rock shoals/the Trian-
gle; 4: Balls Pyramid/South East Rock. Asterisk in Region 4 in-
dicates the location of a small sanctuary zone not visible at the
scale of the map provided. Arrow indicates the direction of 

prevailing current during the survey period
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tal shelf, approximately 10 km wide, with maximum
depth ~100 m. Balls Pyramid, a second, smaller island
with similar continental shelf structure, is located
approximately 25 km south-east of the main island
(Fig. 1). Lord Howe Island is surrounded by the cool
waters of the Tasman Sea and is seasonally encircled
by the warm East Australian Current (EAC) (Boland &
Church 1981). Water temperatures at the time of sam-
pling (22.2 to 23.2°C) and satellite data (BLUElink
www.cmar.csiro.au/bluelink) indicate that EAC waters
dominated throughout our study period, and prevail-
ing currents were from the NNW. The waters extend-
ing 3 nautical miles around Lord Howe Island and
Balls Pyramid were declared an MPA in 1999, and a
multiple-use zoning plan was implemented in Decem-
ber 2004 (NSW MPA 2004), just 5 mo before our study.
Under the plan, 27% of the waters surrounding Lord
Howe, or 12 500 ha, became sanctuary zone where all
extractive uses are prohibited (Fig. 1).

Sampling design. Mid-water BRUVs were deployed
at multiple sites in 4 regions of the continental shelf
of Lord Howe Island and Balls Pyramid (Fig. 1): the
Admiralty Islands, comprising a group of 6 smaller is-
lands just north of Lord Howe Island proper (Region 1);
Red Point/Clear Place, located on the east coast of the
main island (Region 2); Wolf Rock shoals/the Triangle,
2 submerged seamounts off the east coast of the is-
land (Region 3); and Balls Pyramid/South East Rock
(Region 4). Regions were separated on a scale of ~10s
of kilometres, and were chosen in consultation with
local recreational and charter boat fishers as areas
where pelagic fish are (or have historically been)
targeted by either boat-based trolling or rock fishing.
Sample regions were also chosen to include both
MPA sanctuary zones and areas that have remained
open to fishing. A total of 50 BRUV deployments were
conducted during the period from 26 March to 9 April
2005. We conducted 10 to 20 replicate deployments
in each region, with deployments equally divided be-
tween fished areas and MPA sanctuary zones in each
region. Where replicate deployments were conducted
simultaneously within a region, these were sepa-
rated on a scale of ~1.5 to 3 km. Based on maximum
recorded current speeds of 0.34 m s–1 and a deploy-
ment period of 45 min, we estimate the maximum
linear extent of any bait plume was ~920 m and con-
clude that all BRUV deployments represent indepen-
dent samples (Ellis & DeMartini 1995, Cappo et al.
2004).

Mid-water BRUV design. Each BRUV contained a
Sony mini-dv camera (TRV 19E and HC 30E series)
fitted with a wide-angle lens with a conversion factor
of 0.6 (Fig. 2). Cameras were mounted inside custom-
built PVC pipe housings, which were attached to a
light aluminium frame, with a horizontal aspect to

a small plastic bait container (13 cm length × 8 cm
diameter) 1 m from the lens. PVC tubes (15 mm dia-
meter) were attached to the frame at set intervals
behind the bait container (0.5 and 1 m) as reference
markers for fish size and distance from the camera.
BRUV frames were designed to align in the current
such that the cameras were always pointing down-
stream, allowing fish to be observed swimming up-
current into the bait plume. Frames were also
designed so that all supports and reference markers
were visible in front of the camera to ensure that any
fish associating with these structures were visible in
camera footage (Jamieson et al. 2006). Each BRUV
was attached to a mooring, consisting of an anchor line,
anchor, sub-surface buoy and surface buoy (Fig. 2).
Video equipment was suspended at a depth of 10 m
from the surface using elasticized bungee cord in
order to reduce movement in response to wave action.
Video equipment was baited using 100 g (±1 g) of a
mixture of minced pilchards, bread and tuna oil
(8:1:1), all bait components that are commonly used
by pelagic fishers in eastern Australia. The mixture
was combined in a matrix of vegetable meal (falafel)
to ensure that bait release was continual over the
deployment period and proportionate to local current
speed. Mid-water BRUVs were deployed for 45 min.
The research vessel moved well away from the sam-
ple sites to avoid confounding effects of fish asso-
ciating with the vessel.
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At each site we recorded depth, water temperature
and current speed. Surface temperature was measured
using temperature sensors mounted on the boat hull,
and temperature at 10 m depth was measured using
loggers attached to BRUV frames. These were com-
pared to ensure all BRUVs were deployed into the sur-
face mixed layer. Current speed was estimated upon
collection of each BRUV using a drogue deployed to
10 m depth. As the surface buoy had drifted to the
extent of its anchor line at the end of each BRUV
deployment, it was considered a stationary point. The
drogue was deployed next to the stationary buoy and
attached to it via a 10 m line. We estimated current
speed from the time taken for the drogue to travel to
the extent of the 10 m line.

Image analysis. Pelagic and mid-water fish observed
on video footage were identified to species. For each
deployment we recorded MaxN, the maximum num-
ber of fish from each species seen in a single frame in
the first 45 min of video footage (after Willis et al.
2000). MaxN is a conservative estimate of the total
number of fish present in the deployment area, be-
cause only a proportion of the fish that detect the bait
plume will respond by moving up-current to the video
equipment (Løkkeborg 1998), and because fish do not
remain at the bait once they have been attracted;
rather, they leave the field of view and re-visit the bait
on a number of occasions (Kallayil et al. 2003). How-
ever, MaxN was considered preferable to time-based
measures like time to arrival of first fish or fish arrival
rates (Sainte-Marie & Hargrave 1987, Bailey & Priede
2002), because these could be confounded by the
patchy spatial distribution of pelagic fish schools, inter-
actions between school size and foraging and swim-
ming efficiency (Misund & Aglen 1992, Day et al.
2001), and potential association between target species
and the research vessel (Dagorn et al. 2001, Meekan
& Cappo 2004).

Visibility during our survey period was consistently
good (>30 m), so all fish observed in video footage
were included in MaxN. Rough size estimates were
possible for Carcharhinus galapagensis individuals
that swam close and parallel to reference markers
(Meekan & Cappo 2004, Kemp et al. 2006).

Estimating fish abundance. To investigate whether
equations used in deep-sea baited camera studies
for converting video indices to abundance estimates
are applicable to mid-water BRUV data, we compared
MaxN/Plume with MaxN/Attract. MaxN/Plume calcu-
lates the abundance relative to the size of the bait
plume at the completion of a 45 min deployment, while
MaxN/Attract calculates the abundance relative to the
size of the bait plume at the latest time a fish could
detect the plume and swim to the bait in time to be
viewed in the first 45 min of video footage (Sainte-
Marie & Hargrave 1987, Priede & Merrett 1996). We
compare MaxN/Plumedist with MaxN/Attractdist for a
linear approximation of bait plume dispersal where:

Plumedist = 45 × 60 × vw (1)

and
Attractdist = 45 × 60 / [(1/vw) + (1/vf)] (2)

and where vw is current speed and vf is fish swimming
speed (m s–1; Priede & Merrett 1996). Comparisons
were conducted for 4 pelagic species considered rep-
resentative of the range of fish sizes and swimming
capabilities observed in our study (Table 1). Published
estimates of fish size and swimming speeds were used
(Henriques et al. 2002). Where these were unavailable,
published swimming speed data for a congener with a
similar aspect ratio were used (Table 1). All estimates
represent the maximum cruising speed reported for
each species (Sainte-Marie & Hargrave 1987).

We also compared MaxN/Plumearea with MaxN/
Attractarea for a triangular area approximation of bait
plume dispersal (Sainte-Marie & Hargrave 1987, Hill &

258

Table 1. Mean maximum swimming speed estimates (m s–1) for 4 pelagic species estimated from maximum swimming speed
in body lengths (BL) per second and mean fish length (0.5 × maximum length reported in the literature). Where published
data for observed species were unavailable, we have used maximum swimming speed of a congener with similar aspect ratio. 

FL: fork length

Species Surrogate Max. speed Mean FL Max. speed Source
(BL s–1) (m) (m s–1)

Carcharhinus galapagensis C. leucas 3.65 2.0a 7.3 Bainbridge (1958)

Seriola lalandi – 2.30 1.0 2.3 Kuiter (2000),
Clark & Seymour (2006)

Paracaesio xanthurus Pristopomoides filamentosus 3.00 0.2 0.6 Kuiter (2000),
Ellis & DeMartini (1995)

Scomber australasicus Sc. japonicus 4.50 0.3 1.4 Hutchins & Swainston (1999),
Nauen & Lauder (2000)

aBased on length estimates obtained from BRUV footage during the present study
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Wassenberg 1999), assuming horizontal turbulent
mixing occurred at a rate of one-third the current
speed. We estimated Plumearea as the area of a triangle
with length Plumedist and height (= 0.33 × length)
and Attractarea as the area of a triangle with length
Attractdist and width (= 0.33 × length). A scaling
variable of a was chosen as a conservative estimate of
mixing given that current speeds in the sample area
were relatively slow (0.03 to 0.34 m s–1; mean 0.17 m
s–1) and that wave action on BRUVS enhanced bait
dispersion. Vertical mixing, which is likely to be sub-
stantial in the surface mixed layer, has been excluded
from our model. Based on our comparisons (see
‘Results’), we conducted all further analyses using
MaxN, MaxN/Plumedist and MaxN/Plumearea.

Identifying pelagic fish habitat. Pelagic and mid-
water fish assemblages, comprising the 6 most abun-
dant species attracted to baits, were compared using a
2-factor, full-factorial ANOVA design with the factors
Zone (fished versus sanctuary; fixed) and Region (ran-
dom). Comparisons were conducted using DISTLM
(Anderson 2001, McArdle & Anderson 2001). Data
were fourth-root transformed to minimize the influ-
ence of highly abundant or schooling species, and
Bray-Curtis dissimilarity matrices were used. High
sighting rates of Carcharhinus galapagensis enabled
similar analyses to be conducted on abundance data
for this species; again abundance data were square-
root transformed. DISTLM was used also to perform
permutational regression between pelagic assem-
blages and environmental variables (water current
speed, temperature, depth) and to compare environ-
mental variables among sample regions and MPA
zones. On the basis of our results, all DISTLM analyses
were repeated with current speed as an included
covariate. Each of the above analyses was conducted

using MaxN, MaxN/Plumedist and MaxN/Plumearea,
in order to investigate how assumptions about bait
plume dispersal affected results. Associations between
pelagic species were determined using principal com-
ponents analysis of MaxN/Plumearea abundance data,
with varimax rotation.

RESULTS

Pelagic fish assemblages around Lord Howe Island

Mid-water BRUV surveys identified 11 pelagic or
mid-water species from 5 families: Carangidae, Car-
charhinidae, Kyphosidae, Lutjanidae and Scombridae
(Table 2). Of these, 7 species were abundant and
observed on multiple occasions at a variety of sample
sites, while the remaining 4 were observed only once.
Several pelagic or mid-water species, including Seriola
lalandi, Pseudocaranx dentex, Kyphosus sydneyanus
and Paracaesio xanthurus, were often observed in
schools of 10s of individuals. Two different colour forms
of P. dentex were observed during video surveys: those
with grey or white-tipped dorsal fins, which are com-
mon along the NSW coast and a second yellow-finned
variant (Hutchins & Swainston 1999). All Kyphosus
bigibbus individuals observed were of the less-
common, all-yellow colour variant described by Myers
(1999), and were observed in mixed schools with
K. sydneyanus.

The most commonly observed species during BRUV
sampling was Carcharhinus galapagensis, which was
observed on 80% of video deployments. A single indi-
vidual from a second carcharhinid species, Galeocerdo
cuvier, was also observed. All C. galapagensis whose
lengths were estimated were juveniles, ranging from
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Table 2. Pelagic species observed using mid-water BRUV (baited remote underwater video), number of individuals sighted, num-
ber of deployments (out of 50) on which sightings were made and maximum school sizes. Individuals from 12 additional ‘reef
fish’ families were also observed: Acanthuridae, Balistidae, Chaetodontidae, Dasyatidae, Fistulariidae, Girellidae, Labridae, 

Lethrinidae, Microcanthidae, Monocanthidae, Pomacentridae, Serranidae

Family Species Common name Individuals Sightings Max. 
(no.) (no.) school size

Carcharhinidae Carcharhinus galapagensis Galapagos whaler 111 40 9
Galeocerdo cuvier Tiger shark 1 1 1

Carangidae Seriola lalandi Yellowtail kingfish 79 12 34
Seriola rivoliana Highfin amberjack / almaco jack 10 4 4
Pseudocaranx dentex White trevally / silver trevally 121 8 60
Caranx sp. Trevally sp. 3 3 1

Kyphosidae Kyphosus sydneyanus Sydney drummer 77 9 40
Kyphosus bigibbus Grey sea chub 1 1 1

Lutjanidae Paracaesio xanthurus Southern fusilier / painted lady 988 20 200

Scombridae Scomber australasicus Blue mackerel / slimy mackerel 37 8 10
Acanthocybium solandri Wahoo 1 1 1
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~1.2 to ~2 m in length. On 12 occasions we observed
behavioural associations between C. galapagensis and
other pelagic fish, where fish followed closely behind
individual sharks, usually within 1 m, and mirrored
shark swimming and turning patterns. Behavioural
associations between C. galapagensis and the small
pelagic Scomber australasicus were observed on 6
occasions; associations between C. galapagensis and
other large pelagic fish (Seriola lalandi, Seriola rivo-
liana, Pseudocaranx dentex) were also observed on 6
occasions.

Estimating fish abundance

Most pelagic and mid-water fish were observed
arriving at BRUVs from downstream of the bait, indi-
cating that chemosensory cues from the bait plume
were a more important attractant than boat noises,
structural complexity of BRUV frames, or other cues
(Wilson & Smith 1984, Sainte-Marie & Hargrave 1987,
Collins et al. 1999a). Exceptions were Kyphosus syd-
neyanus and K. bigibbus, which showed no directional
patterns in arrival. These species were excluded from
further analyses as converting MaxN to abundance
based on plume dynamics was considered inappropri-
ate and likely to confound assemblage patterns.

MaxN/Plumedist and MaxN/Attractdist were highly
correlated for the 4 species examined (R2 > 0.99). Slopes
of MaxN/Plumearea versus MaxN/Attractarea were close
to 1 for fast-swimming species (1.02 for Carcharhinus
galapagensis, 1.06 for Seriola lalandi) and were slightly
higher for slower swimmers (1.18 for Paracaesio
xanthurus, 1.13 for Scomber australasicus). Similar
trends were observed for comparisons between MaxN/
Plumearea and MaxN/Attractarea. Since MaxN/Plume
does not incorporate errors associated with estimating
fish swimming speed, we used MaxN/Plume (distance
or area) for all subsequent analyses.

Identifying pelagic fish habitat

We detected regional differences in pelagic fish
assemblages (Table 3). Highest pelagic fish abun-
dances were observed in Region 1; high abundances of
Seriola lalandi and Pseudocaranx dentex in Region 1
related to multiple sighting of relatively large schools
(school sizes n = 30 and n = 34 for S. lalandi, n = 50 and
n = 60 for P. dentex). Lowest pelagic fish abundances
were observed in Region 2, and moderate abundances
were observed in Regions 3 and 4 (Fig. 3). Carcharhi-
nus galapagensis, S. lalandi and Paracaesio xanthurus
were common to all regions, Scomber australasicus
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Table 3. Mean squares, pseudo F-statistic and permutation p-values from DISTLM analyses comparing pelagic fish assemblages
and Carcharhinus galapagensis abundance across regions, marine protected area (MPA) zones and environmental variables. 

+current: current was included as a covariate in analysis. Bold values: p < 0.05

Source MaxN MaxN/Plumedist MaxN/Plumearea

MS pseudo-F p (perm) MS pseudo-F p (perm) MS pseudo-F p (perm)

Pelagic assemblages
Region 5191 2.37 0.01 5092 2.27 0.01 5000 2.13 0.01
Region (+current) 5508 2.63 0.006 5424 2.57 0.006 5331 2.49 0.005

Zone 2229 0.82 0.24 2016 0.77 0.25 2347 0.82 0.22
Zone (+current) 4334 1.56 0.26 4094 1.47 0.27 4053 1.46 0.28

Region × Zone 2735 1.25 0.22 2816 1.25 0.22 2858 1.22 0.23
Region × Zone (+current) 2569 1.23 0.27 2560 1.21 0.27 2518 1.18 0.29

Current 3670 1.59 0.20 5621 2.38 0.06 9056 3.80 0.006
Depth 943 0.39 0.81 1123 0.46 0.77 1153 0.53 0.73
Temperature 587 0.24 0.90 657 0.27 0.89 738 0.29 0.90

C. galapagensis
Region 4679 2.94 0.02 4536 2.66 0.03 4381 2.25 0.05
Region (+current) 4656 3.07 0.02 4503 2.92 0.03 4330 2.67 0.03

Zone 4094 3.77 0.03 3653 3.44 0.03 3514 3.18 0.03
Zone (+current) 7456 6.27 0.06 7000 6.87 0.05 6369 7.13 0.03

Region × Zone 1087 0.86 0.60 1057 0.62 0.65 1105 0.57 0.73
Region × Zone (+current) 1385 0.91 0.46 1167 0.76 0.58 1013 0.62 0.71

Current 1107 0.06 0.47 4736 2.55 0.10 12304 6.46 0.005
Depth 970 0.05 0.94 118 0.06 0.95 206 0.95 0.94
Temperature 590 0.32 0.66 603 0.31 0.68 785 0.37 0.68
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was absent from Region 2, and Seriola rivoliana and P.
dentex were absent from Regions 2 and 3 (Fig. 3). Sim-
ilarities were observed for assemblages from Regions 3
and 4, while Regions 1 and 2 each contained distinct
assemblages (Fig. 4a). No differences in assemblages
were observed between fished areas and MPA sanctu-
ary zones. Of the environmental variables measured,
current speed had the greatest influence on pelagic fish
assemblages (Table 3). C. galapagensis, Seriola rivo-
liana and S. australasicus were associated with areas
of slower current speed, while S. lalandi was generally
found at sites with faster current speeds (Fig. 4b).

Regional differences in abundance were also ob-
served for Carcharhinus galapagensis (Table 3), which
were most abundant in Region 3 and least abundant in
Region 4 (Fig. 5a). C. galapagensis abundance was
also higher inside MPA sanctuary zones compared
with fished areas (Fig. 5b).

Effect of bait plume assumptions

An inverse correlation between Carcharhinus gala-
pagensis abundance and current speed was detected
using MaxN/Plumearea (Table 3, Fig. 6). Current speed
was also the most important environmental variable
structuring pelagic fish populations (Table 3); again
significant correlations between assemblage composi-
tion and current speed were only detected using
MaxN/Plumearea, although marginally significant dif-
ferences were detected using MaxN/Plumedist (p =
0.057).

Differences in pelagic fish assemblages and Carcha-
rhinus galapagensis abundance among regions and
MPA zones were detected irrespective of the abun-
dance index used (MaxN, MaxN/Plumedist, MaxN/
Plumearea; Table 3). However, sensitivity to differences
changed depending on whether or not current speed
was included as a covariate in DISTLM analyses. The
inclusion of a current speed covariate made DISTLM
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more sensitive to differences among regions, but less
sensitive to differences between fished areas versus
sanctuary zones (Table 3). This result was related to
systematic differences in current speed observed be-
tween fished areas and MPA sanctuary zones (Table 4).
Over our 2 wk sampling period, significantly lower
mean current speeds were recorded in fished areas
compared with MPA sanctuary zones—a trend which
was consistent across all 4 regions sampled (Fig. 7).
A marginally significant positive correlation was ob-
served between current speed and temperature (r =
0.06, p = 0.057).

DISCUSSION

Pelagic and mid-water fish assemblages at
Lord Howe Island

Our novel mid-water BRUV surveys identified 11
pelagic and mid-water species, 7 of which were abun-
dant and observed on numerous occasions in multiple
regions. Surveys provided data on pelagic fish that are
targeted or caught incidentally by local charter and
recreational fishers (Carcharhinus galapagensis, Seri-
ola lalandi, S. rivoliana, Pseudocaranx dentex), as well
as un-fished pelagic and mid-water species (Paracae-
sio xanthurus, Scomber australasicus, Kyphosus syd-
neyanus, K. bigibbus), thereby providing important
data on the structure of mid-water ecosystems not
available through catch statistics. By far the most com-
mon species observed during our surveys was C. gala-
pagensis. Sightings included numerous juveniles, al-
though this may indicate a behavioural bias whereby
juvenile sharks approach reference markers more
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Table 4. Results of 3-factor ANOVA comparing current speed
across sampled regions, marine protected area zones (fished
areas versus sanctuary zones) and interaction terms. Results
of ANOVA comparing temperature and depth among treat-

ments were not significant. Bold value: p < 0.05

Source df MS F p

Region 3 0.012 2.418 0.244
Zone 1 0.045 8.740 0.047
Region × Zone 3 0.005 0.668 0.577
Error 41 0.007
Total 49
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often and more closely. The presence of juveniles in
the area indicates that the Lord Howe Island continen-
tal shelf may be a nursery area for this species, and is
consistent with previous studies of C. galapagensis
that have found that juveniles are restricted to coastal,
or relatively shallow, areas (Last & Stevens 1994,
Wetherbee et al. 1996). BRUV surveys also provided
useful qualitative data regarding behavioural asso-
ciations between C. galapagensis and other pelagic
species. Large pelagic species may associate with C.
galapagensis to enhance camouflage, or due to some
feeding advantage conferred by the superior detection
and hunting skills of C. galapagensis. As no actual
feeding behaviour of associated fish was observed on
video footage, it is unclear whether large pelagic spe-
cies attempt to strike prey detected by C. galapagensis
before the sharks, or whether they feed on injured
individuals, or scavenge scraps from prey items taken
by sharks.

Of the environmental variables measured in our
study, water current speed had the greatest influence
on the structure of pelagic fish assemblages. Carcha-
rhinus galapagensis, Seriola rivoliana and Scomber
australasicus were associated with lower flow envi-
ronments, while Seriola lalandi was associated with
higher flow environments, although the range of cur-
rent speeds recorded during the survey period indi-
cated that the study area was characterized by rela-
tively slow current speeds (0.03 to 0.34 m s–1; mean
0.17 m s–1). Flow has previously been identified as an
important aspect of habitat for fish assemblages on
the SE Australian continental shelf (Williams & Bax
2001), and associations with particular flow condi-
tions have been observed for other marine predators
(Johnston 2005). Habitat preferences for particular
flow conditions may relate to zooplankton dynam-
ics—zooplankton are known to accumulate in island
wakes, in areas of low flow (Suthers et al. 2004,
2006). Neither temperature nor depth influenced pe-

lagic assemblages or abundances in our study. This
result is contrary to previous studies (Freon & Misund
1999), but both variables had a very small range in
our study (22.2 to 23.2°C temperature; 15 to 55 m
depth).

Estimating fish abundance from mid-water BRUV:
accounting for current speed

Pelagic fish abundance can be best estimated from
mid-water BRUV footage using MaxN/Plume (distance
or area) rather than using MaxN/Attract (distance or
area). The latter technique was developed by Sainte-
Marie & Hargrave (1987) and Priede & Merrett (1996)
for deep-sea BRUV studies, which generally have long
soak times, on the order of days (e.g. Bozzano & Sardà
2002, Kemp et al. 2006), and which target organisms
that are relatively slow moving (e.g. Collins et al.
1999b). In contrast, our mid-water BRUV surveys used
a short soak time (45 min) and targeted fast-swimming
species. Both these factors reduce the time between a
fish’s detection of the bait plume and its subsequent
appearance on video footage, minimizing the differ-
ence between plume size and distance or area of
attraction. Our results are consistent with Ellis &
DeMartini (1995), who conclude that deep-sea tech-
niques for estimating abundance from video footage
may not be suitable for BRUV studies conducted in
shallower ecosystems.

We considered MaxN/Plume to provide more accu-
rate estimates of pelagic fish abundance from mid-
water BRUV, because MaxN/Attract requires addi-
tional data about fish swimming speeds, which is
difficult to obtain (Lowe & Goldman 2001) and incorpo-
rates numerous, often untested, assumptions about fish
behaviour around baits. For example, fish swimming
speeds around baited gears may not reflect swim-
ming speeds to the bait (Løkkeborg 1998, Kallayil et
al. 2003). It is also unclear whether fish swim towards a
bait at their natural or ‘foraging’ or ‘cruising’ speed, or
at their maximum ‘burst’ speed—indeed the behaviour
chosen may vary according to factors such as satiation
or the degree of competition for food resources (Moore
& Howarth 1996, Johansson & Leonardsson 1998). The
strong link between fish swimming speed and body
size (Plaut 2001, Krause et al. 2005) means that
accurate estimates of swimming speed also require
accurate estimates of fish size from BRUV footage,
which are only possible through the use of stereo video
(Harvey et al. 2003). The link between swimming
speed and fish size is of particular concern where size
varies systematically across treatments, e.g. among
sample regions (e.g. Collins et al. 2005) or seasons
(e.g. Smith et al. 1997).
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Assumptions about bait dispersal proved important
for the interpretation our results. Using different
plume models (MaxN versus MaxN/Plumedist versus
MaxN/Plumearea) affected the outcome of regression
analyses comparing fish assemblages and abundances
with local current speeds. Significant correlations
between pelagic fish assemblages and current speed
and between Carcharhinus galapagensis abundance
and current speed were only observed using MaxN/
Plumearea. These different outcomes stem from the
strength of the derived relationship between abun-
dance indices and current speed. Plumedist increases
linearly with current speed, while Plumearea in-
creases as a power function. These different outcomes
demonstrate the difficulty in separating the dual
effects of current speed in BRUV studies: the effect of
current speed on bait dispersal and abundance esti-
mates and the effect of current speed on fish abun-
dance related to habitat preferences for particular
flow conditions or correlated environmental variables
(e.g. depth, temperature). These can only be resolved
through more accurate current speed measurements
and bait dispersion models. Modelling plume dynam-
ics is a complex task, which would require separate
dispersion models for each component of a bait mix-
ture (e.g. oily components versus larger flesh or bread
particles). In the absence of such models, we recom-
mend that abundance be calculated from mid-water
BRUV using an area-based estimate of plume disper-
sal, as this is a conservative estimate that is unlikely to
generate falsely derived relationships. For studies with
long soak times, bait plume area may be best approxi-
mated using an elliptical, rather than a triangular, area
(Priede & Merrett 1996, Bailey & Priede 2002).

The importance of selecting an appropriate bait
plume model is particularly evident when comparing
fish assemblages or abundances across treatments,
where current speed varies systematically among
treatment groups, as observed for fished areas versus
sanctuary zones at Lord Howe Island. Current speeds
recorded in sanctuary zones around Lord Howe Island
over our survey period were significantly higher than
those recorded in fished areas (Fig. 7). Observed dif-
ferences in flow between sanctuary zones and fished
areas are likely to vary temporally with variations in
EAC/Tasman Sea circulation patterns (Ridgway &
Dunn 2003). MPA monitoring or other studies could be
confounded if both regional and temporal variations in
current speed are not taken into account. Our data on
pelagic fish associations with particular flow conditions
provides a standardized baseline for MPA monitoring,
which allows any change in distribution or abundance
following zoning to be assessed relative to the suit-
ability of the surrounding habitat. The inclusion of
current speed as a covariate when analyzing BRUV

data can also account for these effects to some degree.
We suggest that current speed should be measured
using a drogue deployed simultaneously with each
BRUV and for the duration of the BRUV as a Lagran-
gian measure of current that accounts for spatial
and temporal variations in current speed or direction.
Eulerian measures, like current meters and the short
drogue deployment length used in this study, fail to
account for small-scale spatial variations in current
speed (e.g. eddies or gyres, topographically induced
variations to flow; Suthers et al. 2004), which are likely
to be as important as, or more important than, tempo-
ral changes in current speed for BRUV studies with
short soak times (Sainte-Marie & Hargrave 1987, Hill
& Wassenberg 1999, Henriques et al. 2002).

Consideration should be given to other cues that
may attract pelagic fish to BRUVs. Sharks, including
carcharhinds, can be attracted to low-frequency in-
strumental sounds, such as those emitted by a video
camera, from a distance of up to 400 m (Myrberg 2001).
Pelagic fish could also be attracted to BRUVs by the
structure itself (Freon & Misund 1999) or by associated
interruptions to surrounding currents (Popper & Carl-
son 1998). Even though we consider chemosensory
cues to have been the most important in our study,
knowledge of the ‘area of attraction’ for all relevant
cues may enhance the accuracy of abundance esti-
mates (e.g. Bailey & Priede 2002). Incorporating the
‘search area’ traversed by an actively foraging pelagic
predator (e.g. Sainte-Marie & Hargrave 1987, Bailey
& Priede 2002) may further enhance the accuracy of
abundance estimates.

Our results do not represent a comprehensive com-
parison of fished areas and sanctuary zones in the Lord
Howe Island Marine Park because of the small number
of sites surveyed. Rather, they highlight the impor-
tance of accounting for current speed when mid-water
BRUV is used to estimate fish abundance or to com-
pare assemblages among regions or treatments with
different flow conditions. Our results indicate that
oceanographic characteristics can be important for
pelagic fish habitat selection over the scale of kilo-
metres, and these should therefore be considered
during MPA zoning and monitoring. Surveys of the
oceanographic characteristics of pelagic fish habitat
around Lord Howe Island should be conducted over a
longer time period and a broader scale of oceano-
graphic influences (EAC, Tasman Sea) to identify pri-
ority areas for further research or conservation efforts
for pelagic species.
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