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SUMMARY

1. Fish stocking is an increasingly common management tool for freshwater and marine

environments and is often used to create and maintain fisheries in closed waters. The densities at

which fish are stocked can have a large impact on a stocking programme’s success and

sustainability. Stocking densities in impoundment sport-fisheries, for example, are often based on

social or practical factors, and ecologically based stocking models are needed to assist the selection

of stocking densities that are appropriate for the environment.

2. In this study, stocking density is calculated with a numerical model that balances the supply of

prey production with the energetic demand of stocked fish. The model aims to deliver outcomes

over a range of potential management objectives, by providing specific consumption scenarios that

represent the trade-off between population abundance and individual body size in stocked

fisheries.

3. The model uses a steady-state population approach to calculate stocking density, which

optimises population consumption by maintaining a consistent biomass distribution and

encourages sustainable stocking by considering the energetic needs of all cohorts. Carrying

capacity is represented by the steady-state stocking density under a minimum consumption

scenario (when fish meet only their minimum energetic needs). The comparison between a desired

consumption rate and the existing level of production is used to assess the status or ‘health’ of the

existing population and is used to determine whether stocking can occur and whether stocking

densities can be sustainably increased. The probability of incorrectly assuming populations are

achieving a given consumption level is also estimated, which is an ideal approach for interpreting

multiple probability distributions.

4. A Monte-Carlo analysis of uncertainty was used to provide a probability distribution of stocking

density of Australian bass (Macquaria novemaculeata) in three Australian impoundments under

various seasonal and consumption scenarios. The likely consumption rates of the existing

populations were determined using historical stocking densities, which showed that the three

populations were of reasonable health, although one impoundment may be overstocked. The

steady-state stocking densities depended on the desired consumption rate, and there was an

eightfold difference in the stocking density aimed at providing large ‘trophy’ fish and the density

required to reach carrying capacity.

5. Model outputs of existing abundance and biomass density agreed with empirical estimates of

abundance and relative density in these impoundments, which provides support to the model’s
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accuracy. This supply–demand approach to estimating the range of appropriate stocking

densities shows promise as a decision-support tool for stocked impoundments and other closed

fisheries.

Keywords: Australian bass, carrying capacity, consumption, production, stocking density

Introduction

Accurately estimating stocking density is crucial to the

success of fish stocking for creating, enhancing and

maintaining fisheries. Stocking fish at densities appropri-

ate for a fishery’s capacity is crucial if surplus prey

production is to be fully exploited while avoiding severe

losses because of density-dependent growth and mortality.

This is particularly the case in closed systems such as

impoundments, which are closed to the free exchange of

fish with the downstream environment. Some existing

population or stocking models estimate stocking density

but focus only on the energetic needs of a particular life

stage (Taylor & Suthers, 2008), or do not consider ecosys-

tem production (Lorenzen, 1995, 2005). If appropriate

stocking densities are to be predicted for specific impound-

ments, then a production-based approach that incorpo-

rates the unique qualities of closed fisheries is needed.

If it is assumed that impoundments are closed to the

natural exchange of individuals, and that all life stages

co-exist within the system, then a stocking model for

impoundments needs to incorporate the energetic require-

ments of the entire population (i.e. from stocking till

death) when determining stocking density. Furthermore,

impoundment fisheries are often maintained by stocking,

which highlights the need for sustainable stocking den-

sities that consider the requirements of cohorts to be

stocked in future years. This study uses a steady-state

population model to estimate the needs of an impound-

ment’s entire population. It calculates a steady-state

stocking density, which represents the cohort that is most

suitable for utilising impoundment production sustain-

ably. The application of the steady-state approach for

calculating stocking densities is tested here.

Stocking densities in impoundments can be strongly

influenced by particular management objectives. The

stock structure of impoundment fisheries is often the

direct result of a management strategy, particularly when

natural recruitment is low or non-existent, which high-

lights the trade-off managers must make (deliberately or

inadvertently) between creating a low-yield ‘trophy’

fishery or a high-yield fishery that maximises abundance

(Walters & Post, 1993). This trade-off emphasises that

what is ‘optimal’ for one fishery may be inappropriate for

another based solely on differing management objectives.

Incorporating this trade-off into the calculation of stocking

densities also means that the carrying capacity concept,

which is often mentioned in conjunction with stocking

densities (Cowx, 1994; Blankenship & Leber, 1995; Munro

& Bell, 1997), may be mostly a theoretical (and entirely

unpractical) reference for maximum stocking densities

rather than a realistic goal. The trade-off is conceptualised

in this study using the consumption rate of individuals

and how much they are compromised by the impound-

ment’s management plan. This allows a range of stocking

densities to be calculated, which encompass the particular

goals for the most efficient population with the biggest

fish, the most abundant fish, or a population that

compromises between growth and abundance.

This article presents an impoundment stocking model

that estimates stocking density by equalising the energetic

demand of stocked cohorts with the impoundment-spe-

cific supply of available surplus productivity. It was used

to approximate the status and stocking potential of three

study impoundments in New South Wales, Australia

(Fig. 1), for the Australian bass (Macquaria novemaculeata

Steindachner, 1866). This study also proposes the use of a

steady-state population model to effectively manage

closed fisheries.
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Fig. 1 Map of the three impoundments used to test the stocking

model.
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Model approach

General approach

This model combines basic population dynamics with

production and habitat submodels to create a production-

based single-species stocking model. Characteristics of

stocked cohorts are determined by component models

expressed as vectors over the life of each cohort, and the

characteristics of the stocked population are derived from

the characteristics of all the stocked cohorts combined.

Stocking density is ultimately based upon the productive

capacity of the impoundment. This can be considered a

supply–demand approach, as the capacity of an impound-

ment for stocked fish is determined by matching the

energetic requirements of stocked fish (demand) with the

existing production of prey resources (supply) (Fig. 2).

There are factors other than food which can determine the

capacity of an environment for stocked fish (e.g. essential

habitat types; Loneragan et al., 2004), but a production

model is justified in these impoundment fisheries for two

reasons: (i) populations that are heavily stocked bypass

the bottlenecks sometimes imposed by spawning or

larval ⁄ fry refuge habitat and (ii) Australian bass are

flexible users of habitat (Smith et al., 2011a), so population

size is unlikely to be limited by a particular habitat type.

Habitat is incorporated in the model, but only as a

determinant of food availability (Fig. 2).

Supply and demand can vary seasonally, which would

alter the appropriate stocking density. The current model

was run using values collected in summer and winter to

consider this variation. The management objectives (in

terms of providing the biggest fish or the most fish) may

vary between fisheries. This is expressed in the model in

the consumption component, such that stocking densities

are estimated based upon the extremes of consumption

and a likely compromise (Fig. 3). The body mass–specific

average (Cav), maximum (Cmax) and minimum (Cmin)

consumption rates are estimated, which each provide a

unique stocking density based on the corresponding

population’s demand. A fishery that aims to provide

large trophy fish, for example, would use the stocking

density estimated for the Cmax scenario, which is much

smaller than the stocking density calculated for the Cav

and Cmin scenarios. In this model, the stocking densities

for the Cmin scenario can be interpreted as those necessary

to reach an impoundment’s carrying capacity.

Model outputs

There are five main outputs from the model aimed at

determining the appropriate stocking density (Fig. 3).

Firstly, the model applies the population components to

the stocking history to estimate the energetic demand of

the current population under the three consumption

scenarios, which are compared with the estimated pro-

duction (Fig. 3 – box 1). This gives an idea as to the

current status of the population prior to stocking, in terms

of how much of their energetic demand is being achieved.

The closer the peak of the Cmax scenario is to the peak of

available production, the more likely the population is to

be maximising food intake. This information is used to

determine how the impoundment should be stocked. If

the status of the current population is deemed acceptable,

then stocking densities are calculated to maintain the

current consumption rate (Fig. 3 – box 2). If the existing

population is deemed to be under-utilising the available

production, then stocking densities are calculated that will

increase the population’s total consumption to match

productivity (Fig. 3 – box 3). If the population is deemed

to be overstocked, and the likely consumption rate is

below the desired level, then the model will forecast the

next 5 years to determine when stocking can resume

under an improved consumption rate (Fig. 3 – box 4).

Finally, stocking densities are calculated based on a

hypothetical population that is in a steady state (discussed

below), to create a reference for the maximum stocking

densities for each consumption scenario and to calculate

the carrying capacity (Fig. 3 – box 5).

All outputs rely on interpreting probability density

functions (pdfs) resulting from model simulations. The

uncertainty that exists within the environment and within
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the model can be significant, resulting in stocking density

estimates with a wide confidence interval. The model

attempts to ameliorate this by estimating the probability

that a particular consumption scenario will exceed pro-

duction (Fig. 4). The probability that the desired con-

sumption rate (Cav, Cmax or Cmin) exceeds the available

surplus productivity (Pa) is reported, for example

P(Cav > Pa). This probability represents the proportion of

individual model simulations in which the required

consumption rate for the existing population was larger

than the estimate of Pa. It is calculated as the proportion of

the normal pdf of the log10-transformed ratio of C : Pa,

which is greater than zero (Fig. 4), where C represents one

of the three consumption scenarios. In this study,

P(Cmin > Pa) is interpreted as the probability that the

modelled stocking regime will exceed carrying capacity

(i.e. some of the stocked fish cannot possibly survive).

The steady-state population

The steady-state population model is useful for consider-

ing the energetic requirements of entire populations when

calculating stocking density in closed systems [i.e. all life

stages exist within the system, and population size is

determined by recruitment (natural and ⁄or stocking) and

total mortality]. It represents the population in which

every cohort behaves identically. This means that the

component models which dictate the growth, mortality

and consumption of one cohort also represent the steady-

state population, for example the population’s yearly

consumption is equal to the lifetime consumption of a

single cohort. The benefit of using the steady-state

population to calculate the stocking density of a cohort

is that the energetic needs of the entire population are

simultaneously considered, as are the needs of future

cohorts. The steady-state population and the trajectory of

a steady-state cohort are identical, meaning that both can

be defined by a mortality function (eqn 3). Integrating this

function and the associated consumption calculations

yields the total daily consumption (TDC) of the popula-

tion (eqn 20). The mortality function includes the starting

population size (N0; eqn 3), and therefore, stocking

density is simply calculated as the N0 for the particular

steady-state population that has a TDC equal to the

available productivity (Fig. 2). This steady-state approach

is the core concept of the stocking model.

The steady-state population model is used to estimate

all stocking densities in the model, including those that
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Fig. 3 The model’s stocking density outputs. Three consumption scenarios are used as reference points in the model, indicating optimal health

and growth (Cmax, dashed line), average health and growth (Cav, dot-dashed line) and the minimum allowable health and growth (Cmin, dotted

line). These scenarios are used in conjunction with the stocking history to assess the status of the existing population (1) relative to production
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unacceptable current consumption level, and instead forecast the duration to when stocking can resume (4). The consumption scenarios are also

used to give reference stocking numbers that make the most efficient use of production, by assuming the stocked population is in a steady state

(5). The stocking densities under the Cmin scenario in this steady-state population are considered to be those that achieve carrying capacity.
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consider the existing population. The advantage of this

approach remains in non-steady-state populations, that

is, the needs of all cohorts are simultaneously consid-

ered. The only drawback in real populations is the

possibility of an irregular stock structure (Fig. 5), which

means that the steady-state stocking density for real

populations will vary between stocking events in

response to the changing TDC of a population. The

model attempts to address this and aid decision making

by forecasting the predicted consumption of the popu-

lation (Fig. 3). The steady-state model is also an effective

method of estimating carrying capacity. This is because

carrying capacity is the maximum population biomass

that can be achieved sustainably (Daily & Ehrlich, 1992),

and the steady-state population is, by definition, sus-

tainable.

Model structure

The model consolidates numerous component models to

achieve its goals (Fig. 2). The values of the parameters and

variables in the following equations used in model

simulations are listed and their sources described in

Tables 1 & 2.

Growth

The length–weight relationship was calculated for each

impoundment according to

Wt ¼ aLb
t ; ð1Þ

where Wt is mass and Lt is length at time t, and a and b are

constants. Mass can be expressed as a function of time t

(Wt) by substituting Lt in eqn 1 with the von Bertalanffy

growth equation:

Lt ¼ L1ð1� e�kðt�t0ÞÞ; ð2Þ

where L1 is the asymptotic length (mm), k is the von

Bertalanffy growth coefficient, and t0 is the theoretical age

at which Lt = 0.

Mortality

The number of fish alive at time t (Nt) is estimated as the

product of the number stocked (N0) and survivorship

(St):

Nt ¼ N0 � St ð3Þ

Survivorship (St) at time t is determined as the product

of survivorship functions expressing the contributions of

natural mortality (SMt ) and fishing mortality (SFt ):

St ¼ SMt
� SFt

ð4Þ

Survivorship after natural mortality (SMt
) as a function

of t is derived from the von Bertalanffy variant of the

length-based survival equation by Lorenzen (2000):

0 5 10 15 20
Age (year)

To
ta

l d
ai

ly
 c

on
su

m
tio

n
(g

 d
ay

–1
)

Fig. 5 A comparison of the steady-state total daily consumption

(TDC) rate (TCt; eqn 19) relationship (full line) and an actual TCt

relationship (dotted line; Brogo Dam 2010). The integrals of these
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1486 J. A. Smith et al.

� 2012 Blackwell Publishing Ltd, Freshwater Biology, 57, 1482–1499



SMt ¼
L0

L0 þ L1ðekt � 1Þ

� �MrLr
L1k

; ð5Þ

where L0 is the length of fish when stocked (mm), L1 and

k are as described above, and Mr is the mortality rate at

reference length Lr. Survivorship after fishing mortality

(SFt ) is determined by the product of instantaneous fishing

mortality rate (F) and a length-based logistic selectivity

curve:

SFt
¼ e

�F� eðcþdLtÞ

1þeðcþdLtÞ ; ð6Þ

where c and d are constants and Lt is the length of a fish at

time t. Lt is substituted with the von Bertalanffy growth

equation to make SFt
a function of t. The parameters c and

d were selected to enable a L50 = 250 mm (the length for

50% retention) and a selection range of 35 mm (see

Appendix S1). Natural recruitment is not considered in

this model, because Australian bass are unable to spawn

Table 1 The parameter values used in model simulations for Brogo Dam (refer to specific equations for descriptions and units). Values in

parentheses are the winter alternatives to the summer values of seasonally variable parameters. The uncertainty is given for those parameters

varied within the model and represents the standard deviation of normal probability density functions. The parameters used in the sensitivity

analysis are in bold. Parameter values were estimated from either data collected from the study impoundments, data derived from laboratory

experiments, the cited literature, or are inferred (see text for details)

Parameter Equation Value Uncertainty Source

a 1 0.0000128825 Field data

b 1 3.021 Field data

L1 2 399.9 11.2* Field data

k 2 0.24 0.015* Field data

t0 2 )0.31 Field data

L0 5 25 Pers. comm.†

Mr 5 0.3 0.03 Field data (Appendix S1)

Lr 5 300 Field data (Appendix S1)

F 6 0.1 0.02 Best guess (Appendix S1)

c 6 )15.674 Best guess (Appendix S1)

d 6 0.0627 Best guess (Appendix S1)

T 7, 10, 11, 20, 21, 23, 24 20 (9.5) 2 (1) Field data

A 7, 8 2.44 Field data

b 9, 11 0.8 Experiment data

Wr 9 500 Inferred

amax 10 0.112 Experiment data

bmax 10 )0.3 Stewart et al. (1983); Cyterski et al. (2002)

q 10, 11 0.05 Best guess; Stewart et al. (1983)

amin 11 0.008 Field data; inferred

Chla 12 7.48 (3.46) 1.87 (0.87) Field data

PChla 12 0.0045 0.001 Literature (Appendix S2)

tpr 13 2 days at 20 �C‡ Literature (Appendix S2)

Bz 13 0.21 (0.14) 0.053 (0.035) Field data

tzr 13 3.47 days at 20 �C‡ Literature (Appendix S2)

Vmax 15 8 980 000 Pers. comm.§

Vc 15 100 Field data

dmax 17 23 Pers. comm.§

dh 17 9.6 (0) Field data

TE 18 0.1 0.05 Pauly & Christensen (1995)

TLb 18 3.43 (3.22) 0.18 (0.15) Field data (Appendix S3)

TLp 18 1 Pauly & Christensen (1995)

TLz 18 2 Pauly & Christensen (1995)

Dp 18 0.45 (0.33) 0.090 (0.066) Field data (Appendix S3)

Dz 18 0.49 (0.64) 0.098 (0.128) Field data (Appendix S3)

E 18 0.1 Inferred

tmax 20 20 Field data; Harris, (1985a)

*Errors estimated from outputs of variance–covariance matrix.
†Personal communication with the NSW Department of Primary Industries.
‡These values used to calculate eqns 23 & 24 (see Appendices).
§Personal communication with NSW Office of Water and Shoalhaven Council.
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in freshwaters (Harris, 1986). ‘Recruitment’ in this study is

therefore only considered as densities stocked. Natural

recruitment could be incorporated using a stock-recruit-

ment model (Hilborn & Walters, 1992) and does not affect

the steady-state approach.

Consumption

Three consumption levels are used to estimate stocking

densities under various resource scenarios: maximum

consumption (Cmax), minimum consumption (Cmin) and

the likely average consumption (Cav). These are all in

units of wet weight food per wet weight consumer

(g g)1 day)1). The average and minimum consumption

rates were estimated using a power curve of weight (W)

with the exponent determined by metabolic scaling

coefficient (b). Metabolism (M) is known to be propor-

tional to weight (W), such that M � Wb (Bohlin et al.,

1994). If consumption (C; g) scales in proportion with

metabolism, then C � Wb. Relative consumption (Cr;

g g)1) thus becomes Cr � Wb)1. This power curve deter-

mines the shape of the Cav and Cmin relationships, with b
equal to 0.8 (calculated from a feeding experiment; J.

Smith, unpubl. data). The magnitude of the Cav function is

determined using the relative consumption (Cr) regression

of Palomares & Pauly (1998):

Cr ¼
107:964�0:204 log W1�1:965T0þ0:083A

365
; ð7Þ

where Cr is the relative consumption (g g)1 day)1), W1 is

the asymptotic weight of the population, T‘ is the

temperature (T) of the waterbody in Kelvin units

expressed as T‘ = 1000 (T + 273.15) )1, and A is caudal

aspect ratio of the species, given by

A ¼ h2

SA
; ð8Þ

where h is the height of the caudal fin and SA is its

surface area. Relative consumption (Cr) is used to

estimate the relative average consumption (Cav) of an

adult Australian bass at a given reference weight (Wr),

which is used in a relationship of average consumption

as a function of weight (W) according to metabolic

scaling:

Cav ¼
Cr

Wb�1
r

�Wb�1 ð9Þ

The maximum relative consumption (Cmax, g g)1 day)1

wet weight) is determined by a negative power curve of

weight and an exponential function of temperature

(Elliott, 1976):

Cmax ¼ amaxWbmax � eqT; ð10Þ

where amax, bmax and q are constants and T is temperature

(�C). The value of bmax was estimated from studies on

similar-sized fish (Stewart et al., 1983; Cyterski, Ney &

Duval, 2002), and the value of amax was derived from a

satiation feeding experiment using young captive Aus-

tralian bass (J. Smith, unpubl. data). The minimum

relative consumption (Cmin, g g)1 day)1 wet weight)

necessary to meet the energetic demand of an Australian

bass was calculated using a negative power curve of

Table 2 The parameter values used in model simulations for Danjera and Flat Rock Dams, which differ from the standard values used for all

impoundments (Table 1). Values in parentheses are the winter alternatives to the summer values of seasonally variable parameters (refer to

specific equations for descriptions and units). The uncertainty is given for those parameters varied within the model and represents the standard

deviation of normal probability density functions for those parameters

Parameter Equation

Danjera Flat Rock

Value Uncertainty Value Uncertainty

a 1 0.0000101859 0.0000169044

b 1 3.064 2.973

L1 2 352.8 12.6* 474.7 35.1*

k 2 0.270 0.027* 0.179 0.024*

t0 2 )0.52 )0.1

T 7, 10, 11, 20, 21, 23, 24 23 (11) 2 (1) 22 (10) 2 (1)

Chla 12 7.46 (1.66) 1.87 (0.42) 4.28 (4.13) 1.07 (1.03)

Bz 13 0.30 (0.16) 0.07 (0.04) 0.64 (1.42) 0.16 (0.36)

Vmax 15 7 800 000 400 000

Vc 15 100 100

dmax 17 27 6

dh 17 20 (12) 4 (2)

*Errors estimated from outputs of variance–covariance matrix.
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weight-at-age according to metabolic scaling, and an

exponential function of temperature:

Cmin ¼ aminWb�1 � eqT; ð11Þ

where amin is a constant and b, q and T are as described

above. The value of amin was derived from a stomach-

content analysis of adult Australian bass (>500 g), by

assuming that the average wet weight of food in the

stomach (g g)1) represented the minimum daily con-

sumption at that temperature. The constant q was

estimated by using a conservative estimate of that in the

study by Stewart et al. (1983), which agreed with field and

experimental data for maximum and minimum consump-

tion rates. The three consumption curves Cav, Cmax and

Cmin are illustrated in Fig. 3. Consumption as a function of

age (e.g. Cavt) is calculated by substituting W (eqns 9, 10 &

11) with Wt (eqns 1 & 2).

Production

Phytoplankton production and zooplankton production

are calculated by converting standing stock biomass into

surplus productivity. Phytoplankton biomass is estimated

from chlorophyll concentration using

Bp ¼
Chla

PChla � 1000
; ð12Þ

where Bp is the biomass of phytoplankton (g m)3), Chla is

the concentration of chlorophyll-a (lg L)1), and PChla is

the proportion (by fresh weight) of phytoplankton made

up by chlorophyll-a. This standing stock is converted to a

surplus productivity (i.e. the biomass that can be sustain-

ably harvested daily), using the average replacement time

of the phytoplankton community:

Pp ¼
Bp

tpr
; ð13Þ

where Pp is the surplus productivity of phytoplankton

(g m)3 day)1) and tpr is the time (days) the phytoplankton

population theoretically takes to double (or replace itself)

in terms of biomass. This is a simple alternative to the

common method of estimating P : B ratios (Ney, 1990)

and is suited to prey species for which a replacement time

makes biological sense (i.e. those with short generation

times or that reproduce through cell division). The same

method is used to estimate surplus zooplankton produc-

tivity (Pz; g m)3 day)1) using direct field estimates of the

standing stock biomass of zooplankton (Bz; g m)3) and the

replacement time for the zooplankton community (tzr;

days). Details of phytoplankton and zooplankton sam-

pling and the estimation of PChla, tpr and tzr are given in

Appendix S2.

The amount of production available can be dependent

on the overlap between the distributions of predator and

prey (Ney, 1990). This is an important consideration in

closed waters because annual periods of stratification can

alter the distribution of stocked fish (Smith et al., 2011a)

and partially segregate predator and prey (Cyterski &

Ney, 2005). This was considered in the current model by

allocating the productivity which occurred only in the

habitat volume that was available to Australian bass (Va;

m)3) to a stocked cohort. For example, the surplus-

phytoplankton production that is available (Pap; g day)1)

to Australian bass is calculated:

Pap ¼ Pp � Va ð14Þ

The same calculation is used to estimate the available

surplus production of zooplankton (Paz). The available

habitat volume in impoundments varies mostly because

of changes in absolute volume and because of the

isolation of bottom areas owing to stratification-driven

hypoxia (Smith et al., 2011a). Habitat availability is thus

calculated:

Va ¼ Vmax �
Vc

100
� Vmax �

Vu

100
; ð15Þ

where Va is as defined above, Vmax is the volume of the

impoundment when full (m3), Vc is the current absolute

volume (%), and Vu is the volume unavailable because of

bottom hypoxia (%). Vc is a metric commonly recorded by

the organisations that manage impoundments, but Vu

requires a relationship between depth (d) and impound-

ment volume (V). The current model uses a three-segment

linear function constructed using data from a study

impoundment (Brogo Dam; NSW Office of Water, pers.

comm.) and is the shape used for all study impound-

ments:

V ¼
100� 6:1

3 d ; 0 � d � 30
72:75� 1:125d ; 30 < d � 55
80�0:8d

3 ; 55 < d � 100

8<
: ; ð16Þ

where V is the impoundment volume (%) and d is the

depth from the surface (% of maximum depth). This is

used to calculate the volume made unavailable by bottom

hypoxia (Vu; eqn 15), by calculating d as the depth from

the surface (%) at which a threshold level of hypoxia

begins, which is 4 mg L)1 dissolved oxygen for Australian

bass (Smith et al., 2011a):

d ¼ dmax � dh

dmax
� 100; ð17Þ
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where dmax is the maximum depth (m) of the impound-

ment when full and dh is the vertical distance (m) between

the maximum depth and the depth at which the threshold

level of hypoxia begins.

The amount of the available surplus production of

phytoplankton (Pap) that makes it through the food web to

Australian bass is estimated using a general trophic transfer

function (Pauly & Christensen, 1995). This is modified to

include additional trophic variables to calculate the total

amount of production available in a specific impoundment:

Pt ¼
Pap � TEðTLb�TLpÞ

Dp
� ð1� EÞ; ð18Þ

where Pt is the total amount of production (g day)1) that is

directly available to Australian bass, TE is the trophic

transfer efficiency, TLb is the trophic level of Australian

bass, TLp is the trophic level of phytoplankton, Dp is the

proportion of the diet of Australian bass that ultimately

derives from phytoplankton, and E is the proportion of

energy in the system dedicated to other consumers that

share prey with Australian bass but are not prey of

Australian bass themselves. This parameter would most

often represent the biomass of direct competitors (such as

other stocked percichthyids). Total productivity (Pt) is also

calculated using estimates of zooplankton production, by

substituting Paz, TLz and Dz for the phytoplankton vari-

ables. These two estimates of Pt (one derived from

phytoplankton and one from zooplankton) are averaged

in the model to give a more robust estimate of Pt. The

parameter Dp (or Dz) is a necessary addition, as it is often

the case that 50% or more of the energy supporting

impoundment fisheries is from allochthonous sources

(Appendix S3; Reynolds, 2008; Solomon et al., 2008). The

parameter E is used to consider the energetic needs of

other predatory fish and can be assigned based on the

suspected proportion of total biomass (of that trophic

level) that is made up by the target species. In the current

study, E is a small value, because all study impoundments

contained few other large consumers.

Equalising consumption and production

The TDC (g day)1) of a cohort at age t (TCt) is calculated

as the product of abundance (Nt) and body mass (Wt) at

age t and the average daily consumption of an individual

at that age (Cavt, for example):

TCt ¼ Nt �Wt � Cavt ð19Þ

This equation is used to estimate the total consumption

of both the actual and steady-state populations. The only

difference between the two populations is that Nt and Wt

in the steady-state case are assumed to be in a steady state

and thus represent the basic relationships established over

the life of one cohort. In the actual population, these

relationships are more complicated and are the result of

variable stocking events (i.e. a non-steady-state; Fig. 5). In

the steady-state population, the integral of TCt represents

the total consumption of the population over its lifetime

(tmax, y), or the total yearly consumption of tmax cohorts

(i.e. the yearly intake of the steady-state population).

Dividing TCt by 365 days provides an instantaneous

estimate of the total daily consumption (TDC; g day)1)

of the steady-state population:

TDC ¼
R tmax

t0
TCt dt

365
; ð20Þ

where tmax is the oldest age of a cohort and t0 is the age at

stocking. This approach is also used to estimate TDC for

the actual population, but because of the non-steady-state

stock structure, TDC is estimated for a particular day after

stocking that coincided with the summer and winter

seasons (summer: 30 days after stocking; winter: 200 days

after stocking). The TDC calculated for each consumption

scenario (Cav, Cmax, Cmin) is then used to estimate stocking

density, by finding the steady-state population in terms of

N0 (eqn 3) which has a TDC equal to the available

productivity (Pt). The steady-state population curve has

N0 proportional to the magnitude of its integration, which

means that the steady-state stocking density (N0i) can be

calculated by finding the TDC (using eqn 20) of a

reference population (TDCr) that has a pre-determined

starting population size (N0r) and scaling this to Pt to find

the stocking density:

N0i
¼ Pt

TDCr
�N0r ð21Þ

N0r can be any value (10 000 in the current study). This

equation is used to calculate the steady-state stocking

densities (Fig. 3 – box 5), and Pt is replaced with the

current population’s TDC to calculate the ‘maintain’

stocking density (Fig. 3 – box 2).

Stocking densities can be estimated which increase the

current consumption level, which is deemed to occur when

production exceeds the requirements of the desired con-

sumption level (i.e. a production surplus; Fig. 3 – box 3).

Stocking density is then calculated as that needed to

maintain consumption, plus that needed to create a steady-

state population which has a TDC equal to this additional

surplus production (Pt). This value approaches the steady-

state stocking density (Fig. 3 – box 5), but is usually less,

probably due to artefacts of the log-normal distributions.
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Sensitivity analysis

A sensitivity analysis was carried out on parameters and

variables likely to vary biologically and those with

uncertain values, to determine the relative effect of these

parameters in determining model outputs (Table 1).

Monte-Carlo simulations were used to produce random

sets of parameter values, consisting of either the assigned

value or the value ± 10%. Simulations were continued

until the variance in the steady-state stocking density

stabilised (5000 simulations).

Parameter values were standardised according to the

method of Kleijnen (1997), to determine the relative

importance of parameters on the model output. Stepwise

regression analysis was used to determine the best-fit

equation of parameter values to the model output, as

evaluated using Akaike’s Information Criteria in the

statistical package R (version 2.13.1, R development core

team, http://www.R-project.org). The best model con-

sisted of 10 parameters, which explained 75% of the

variation in stocking density (F = 341.1, P < 0.001). The

trophic level of bass (TLb) and the population asymptotic

length (L1) had the largest (and inverse) influence on

stocking density (Fig. 6).

The 10 parameters from the sensitivity analysis were

selected to be expressed in the model as probability

density functions (Table 1). Uncertainty was expressed

using a normal distribution, which had standard devia-

tions that were estimated from data or were inferred. The

correlation between the von Bertalanffy parameters k and

L1 (eqn 2) was acknowledged in the model by assigning

these parameters a multivariate probability density func-

tion. This was determined by the variance–covariance

structure of these parameters during the nonlinear esti-

mation of von Bertalanffy parameters.

Model simulations

All simulations were run in MATLABMATLAB v. R2010a (Math-

works, Natick, MA, U.S.A.). Definite integrals of con-

sumption functions (eqn 20) were estimated in MATLABMATLAB

using recursive adaptive Simpson quadrature. The model

was designed as a Monte-Carlo analysis, with each model

simulation sampling a value for varied parameters from

their assigned probability density functions. Simulations

continued until the variance in the steady-state stocking

density for the Cav consumption scenario stabilised (5000

simulations). Probability density functions were created

for most model outputs. Results represent the state of each

fishery in the Australian summer 2010 ⁄2011 and winter

2011.

Study impoundments

Three impoundments stocked with Australian bass were

selected to test the application of the stocking model:

Brogo Dam (36.492�S, 149.740�E), Danjera Dam (34.920�S,

150.385�E) and Flat Rock Dam (34.888�S, 150.575�E)

(Fig. 1). These are relatively small impoundments (Ta-

bles 1 & 2) stocked regularly with Australian bass

(Appendix S5), with no other species stocked in recent

years. Brogo and Danjera are similar in volume and depth,

with similar undeveloped catchments, and are considered

as being between oligotrophic and mesotrophic, based on

their chlorophyll-a concentrations (Marshall & Peters,

1989). Flat Rock is much smaller and shallower with a

more developed catchment and is approaching eutrophy,

based on its catchment and occasional macrophyte

blooms. Stock analysis and field sampling were carried

out in each impoundment to parameterise the model

(Tables 1 & 2; see Appendices). The current model

assumes that impoundments are closed systems. Immi-

gration is not possible in these study impoundments

because there are no fishways. Emigration is occasionally

possible during peaks in volume when the spillway is

Fig. 6 Results of the sensitivity analysis. The bars represent the

coefficients of the stepwise linear regression of standardised model

parameters, which signifies the relative influence of key parameters

on the model’s steady-state stocking density output. The direction of

the bars indicates whether a change in the parameter causes a similar

change (above the x-axis) or inverse change (below the x-axis) in the

stocking density output. Chla, concentration of chlorophyll-a; PChla,

proportion of phytoplankton that is chlorophyll-a by mass; Bz, con-

centration of zooplankton; TLb, trophic level of Australian bass; TE,

trophic transfer efficiency; Dp, proportion of the Australian bass’ diet

derived from phytoplankton; Dz, proportion derived from zoo-

plankton; T, average water temperature; L1, the population’s

asymptotic length; Mr, the natural mortality rate.
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active, but these losses are assumed to be incorporated

within total mortality (Appendix S1).

Results

The steady-state stocking densities that exploit the avail-

able surplus productivity (according to the three con-

sumption scenarios) showed a large amount of variation

between impoundments, seasons and consumption sce-

narios (Table 3). Log10-normal distributions were used to

define the model simulations. In Brogo Dam, average

steady-state stocking densities ranged from 8472 to 68 707

fish per year in summer and 3864 to 31 117 in winter

(Table 3; N = 10log
10

N). These stocking densities scale

linearly with stocking interval, meaning that the annual

steady-state stocking density of 21 727 (Cav, summer) is

equivalent to 43 454 stocked every 2 years. The 99%

confidence intervals for most stocking densities encom-

passed approximately two orders of magnitude.

Carrying capacity in this model is represented by the

steady-state stocking density for the Cmin scenario. This

was usually about three times greater than the Cav

estimates, and about eight times greater than the Cmax

estimates, which the model gives as the target for creating

a trophy fishery. The densities required to maintain the

current population consumption (‘maintain’; Fig. 3 – box

4) approximated a normal distribution and had much less

uncertainty than other model outputs. The normal prob-

ability density functions (with mean l and standard

deviation r) representing the annual maintenance stock-

ing densities are as follows: Brogo Dam l = 15 010;

r = 346.4; Danjera Dam l = 10 133; r = 172.7; and Flat

Rock Dam l = 2869; r = 221.4.

The status of each population according to realised

consumption is observed by incorporating production

(Fig. 3 – box 1). In all impoundments, average production

was likely to be insufficient to meet the TDC of the

existing populations under the Cmax scenario, with the

probability (P) of this varying between 0.642 and 0.970

(Table 4). The consumption rate under the Cav scenario

exceeded average production with P > 0.5 in Brogo Dam

in winter for at least the following 2 years (Fig. 7, Table 4);

Danjera Dam in winter of the modelled year, but with

P < 0.5 in the following year (Table 4); Flat Rock Dam in

summer for at least the next 5 years and in winter for at

least the next 2 years (Table 4). The status of the popu-

lations (i.e. the likely actual consumption rate) was poorer

in winter for Brogo and Danjera Dams, but improved in

Flat Rock Dam in winter. This is because production did

not decrease in Flat Rock as quickly as consumption

rate, meaning that fish in winter had a greater relative

energy intake than in summer. The probability that the

modelled stocking regime would reach carrying capacity

[P(Cmin > Pa)] ranged from 0.041 in Danjera in summer to

0.355 in Flat Rock in summer (Table 4). Overall, the

population in Danjera Dam likely has the best status, with

an average P(Cav > Pa) = 0.433. This was followed by

Brogo Dam (0.494), then Flat Rock Dam (0.682).

The average production (Pa) occasionally surpassed the

modelled TDC for the actual population in the study

Table 3 Means (l) and standard deviations (r) of the annual steady-state stocking density (N0i), log10-normal distributions under the average

(Cav), maximum (Cmax) and minimum consumption (Cmin) scenarios, using summer and winter values

Brogo summer Brogo winter

Danjera

summer Danjera winter

Flat Rock

summer

Flat Rock

winter

l r l r l r l r l r l r

N0i Cav 4.337 0.438 4.016 0.409 4.196 0.424 3.897 0.382 3.160 0.411 3.379 0.387

N0i Cmax 3.928 0.434 3.587 0.405 3.806 0.419 3.487 0.377 2.721 0.405 2.919 0.380

N0i Cmin 4.837 0.437 4.493 0.410 4.728 0.423 4.410 0.381 3.615 0.410 3.813 0.386

Table 4 Probabilities (P) that the total daily consumption of the

existing populations under various consumption scenarios exceeds

available production (Pa), as modelled using summer and winter

parameter values. Average (Cav), maximum (Cmax) and minimum

consumption (Cmin) scenarios are used for the current year (t) and for

Cav forecasted up to 5 years (t + 5) without stocking. The calculation

of these probabilities is illustrated in Fig. 4. In this study,

P(Cmin > Pa) is interpreted as the probability that the modelled

stocking regime will exceed (i.e. reach) carrying capacity

Brogo Danjera Flat Rock

Summer Winter Summer Winter Summer Winter

P(Cav > Pa) (t) 0.352 0.635 0.307 0.558 0.777 0.586

P(Cmax > Pa) (t) 0.706 0.915 0.642 0.872 0.970 0.923

P(Cmin > Pa) (t) 0.064 0.208 0.041 0.122 0.355 0.176

P(Cav > Pa)

(t + 1)

0.327 0.596 0.264 0.491 0.762 0.560

P(Cav > Pa)

(t + 2)

0.291 0.544 0.217 0.415 0.734 0.522

P(Cav > Pa)

(t + 5)

0.166 0.350 0.094 0.201 0.598 0.370
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impoundments (Table 5). This indicates the possibility for

TDC to increase (Fig. 3 – box 3), which means that

stocking numbers can be increased for a given consump-

tion scenario. This ‘surplus’ production was allocated to a

steady-state cohort (Table 6), and these additional stock-

ing densities can be added to the maintenance stocking

densities to calculate the overall annual stocking density.

The historical stocking densities indicate that Flat Rock

Dam should have the poorest status, as the relative

stocking densities have been two times to six times greater

in this impoundment than Brogo or Danjera (Table 7).

Despite this, the model predicts that carrying capacity in

Flat Rock has still not been reached, and the impound-

ment is at 68% carrying capacity by biomass. The relative

values of the catch per unit effort (CPUE) of Australian

bass using gillnetting in the three impoundments

(g 10 m)2 h)1; Table 7) resemble the model’s estimates

for current biomass density (g m)3 Va; Table 7).
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P(Cav > Pa) = 0.352

P(Cav > Pa) = 0.327 P(Cav > Pa) = 0.291 P(Cav > Pa) = 0.166

P(Cav > Pa) = 0.596 P(Cav > Pa) = 0.544 P(Cav > Pa) = 0.350

Brogo Dam

P(Cmax > Pa) = 0.706P(Cmin > Pa) = 0.064
P(Cav > Pa) = 0.635

P(Cmax > Pa) = 0.915P(Cmin > Pa) = 0.208

Fig. 7 Comparisons of production (Pa, unbroken line) and the resources required for the existing population in Brogo Dam under maximum

(Cmax, dashed line), average (Cav, dot-dashed line); and minimum consumption (Cmin, dotted line) scenarios using summer 2010 ⁄ 2011 and

winter 2011 values (time t). Pa and Cav requirements are forecasted for both seasons if stocking was postponed 1 year (t + 1), 2 years (t + 2) and

5 years (t + 5). Given is the probability (P) that the requirements of the actual population for the Cav scenario would exceed production

(Cav > Pa). The x-axis is in log10 units.

Modelling stocking density in impoundments 1493

� 2012 Blackwell Publishing Ltd, Freshwater Biology, 57, 1482–1499



Discussion

This study compiles existing component models and

introduces some novel and important aspects to create a

comprehensive stocking model for closed systems. It

makes progress for the improved management of stocked

impoundments and lakes by acknowledging the variabil-

ity that can exist in stocking densities owing to variation

in seasonal factors, habitat availability and desired or

expected consumption rate. The use of consumption

scenarios to customise stocking densities to a particular

impoundment’s objectives should encourage a more

flexible and transparent approach to calculating stocking

densities.

The steady-state population model is a novel approach

for predicting stocking densities. Incorporating the inte-

gral of steady-state populations (Miranda, 2002) and

consumption relationships (Essington, Kitchell & Walters,

2001) into population dynamics is not new, but its use

here as a reference and steady-state stocking density is

novel. The assumption of a steady-state population that is

maintained by stocking encourages sustainable stocking

densities and is powerful in situations where the actual

population is not well studied. Theoretically, the

actual population size need not even be estimated to use

Table 5 Mean (l) and standard deviation (r) of the available production (Pa) or actual total daily consumption log10-normal distributions for all

three impoundments using summer and winter parameter values. Average, maximum and minimum consumption scenarios were simulated

for the current year (t) and forecasted under the average scenario up to 5 years (t + 5) without stocking. The values for Brogo Dam are illustrated

in Fig. 7. Units are log10(kg day)1)

Brogo summer Brogo winter

Danjera

summer Danjera winter

Flat Rock

summer

Flat Rock

winter

l r l r l r l r l r l r

Pa 1.678 0.386 1.114 0.356 1.539 0.377 0.980 0.324 0.453 0.337 0.391 0.298

TDCav (t) 1.511 0.222 1.256 0.214 1.323 0.226 1.038 0.229 0.760 0.233 0.473 0.238

TDCmax 1.914 0.215 1.673 0.210 1.695 0.220 1.423 0.224 1.198 0.225 0.927 0.231

TDCmin 1.014 0.220 0.780 0.214 0.791 0.224 0.524 0.227 0.304 0.229 0.038 0.235

TDCav (t + 1) 1.480 0.233 1.216 0.227 1.264 0.239 0.971 0.243 0.744 0.244 0.450 0.250

TDCav (t + 2) 1.430 0.245 1.160 0.239 1.191 0.253 0.893 0.257 0.712 0.255 0.412 0.261

TDCav (t + 3) 1.369 0.257 1.094 0.252 1.108 0.266 0.806 0.271 0.669 0.267 0.365 0.273

TDCav (t + 4) 1.299 0.269 1.021 0.265 1.018 0.281 0.713 0.285 0.618 0.278 0.311 0.285

TDCav (t + 5) 1.222 0.281 0.942 0.278 0.923 0.295 0.615 0.299 0.561 0.289 0.251 0.296

Table 7 Historical average stocking densities (N0) and various model outputs representing the status of the studied impoundment fisheries: the

volume of available habitat (Va), the modelled population abundance (N), population biomass (B) and carrying capacities (CC; this is the steady-

state population in the Cmin scenario). Va, N, B and CC are as modelled for January 2011. B and CC are calculated as total kg per impoundment

(imp) and as g m)3 of available habitat. The actual catch per unit effort (CPUE) of fish caught with gillnets in 2010 is given as the catch rate by

number (# 10 m)2 h)1) and by mass (g 10 m)2 h)1)

Parameter Units Brogo Danjera Flat Rock

N0 imp)1 20 742 16 590 4873

N0 m)2; m)3 0.021; 0.002 0.018; 0.002 0.046; 0.012

Va m3 7 980 500 4 111 900 259 000

N imp)1 6456 3524 1033

B kg imp)1; g m)3 Va 1556; 0.195 798; 0.194 272; 1.050

CC kg imp)1; g m)3 Va 6934; 0.869 4188; 1.019 398; 1.537

CPUE # 10 m)2 h)1; g 10 m)2 h)1 0.84; 236 0.69; 215 1.21; 350

Table 6 The additional stocking densities (impoundment)1 year)1)

needed to increase the current population’s consumption to the

average (Cav), maximum (Cmax) or minimum (Cmin) rates that

equalise the estimated surplus productivity (Fig. 3 – box 3). These are

added to the average ‘maintain’ stocking densities to estimate each

impoundment’s total stocking density. These are forecasted to mea-

sure the increase in ‘surplus’ production over time (t). The values

differ between impoundments and seasons, because of differences in

production, habitat availability and population structure

Brogo Danjera Flat Rock

Summer Winter Summer Winter Summer Winter

Cav (t) 4720 0 3479 0 0 0

Cmax 0 0 0 0 0 0

Cmin 36 421 12 573 24 827 12 693 3636 9735

Cav (t + 1) 5433 0 4158 125 0 0

Cav (t + 2) 6440 0 4883 1122 0 0

Cav (t + 5) 9633 2546 6717 3509 0 1780
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steady-state stocking densities. If it is assumed that the

actual population is small and underutilising the food

resource (as opposed to estimating the current stock status;

Fig. 3 – box 1), then stocking can commence using steady-

state stocking densities modelled using site-specific pro-

duction and habitat information and average parameter

values for the stocked species. The complete model,

however, would be most beneficial to those species for

which model parameters are derived from empirical data.

This model also quantifies carrying capacity, which is a

feature often noted as crucial to stocking management

(Cowx, 1994; Blankenship & Leber, 1995; Munro & Bell,

1997) but usually absent from stocking models. In this

study, carrying capacity is assumed to be the point at

which the average individual in a population is meeting

its minimum energetic requirements. It is unclear whether

this situation represents the carrying capacity of wild

populations, or is achievable in stocked fisheries without

significantly increasing mortality rates (which would

increase the stocking density required). In any case, the

Cmin scenario makes a useful upper limit for stocking

densities. The model also makes useful relative compar-

isons regarding the carrying capacity; for example, it

predicts that the stocking densities that ensure the average

individual is achieving maximum consumption (Cmax) are

around eight times smaller than those needed to reach

carrying capacity (Cmin).

To stock or not

The status of a fishery is a main output of this model

(Fig. 3 – box 1) and should be determined in stocked

fisheries in which the existing population size can be

accurately estimated. The current population consump-

tion cannot exceed the available surplus production, and

if a target consumption scenario does, then the actual

consumption rate must be lower than that scenario (e.g.

Cav, Brogo Dam in winter; Fig. 7). Whether the results for

Brogo Dam, for example, indicate that it should not be

stocked until the average winter Cav drops below average

production [approximately when P(Cav > Pa) < 0.5] is left

to a stocking manager’s discretion. The population in

Brogo Dam is mostly healthy (Smith et al., 2011a), so it

may be that the increased consumption rate in summer is

driving the overall health of the population. Further field

studies examining the role of production minima and

maxima on population regulation are needed before this

can be determined. In any case, the forecasting function-

ality and the reporting of the probabilities relating to

consumption rate are comprehensive aids to determining

when stocking should occur.

The stocking magnitude and frequency of steady-state

cohorts

This model will be most beneficial to a stocked fishery

when cohorts are stocked regularly at the specified rate.

This will ensure the most regular distribution of biomass

in the population, according to the steady-state popula-

tion. The duration of the interval between steady-state

stocking events determines their magnitude, and stocking

densities estimated using the steady-state population

model scale linearly, for example the annual stocking

density is doubled if stocking occurs every 2 years. If the

stocking interval varies, however, then stocking densities

should not necessarily be scaled with interval, as the

larger stocking events reduce the allowable stocking

densities if stocking at the shorter interval resumes. This

difference in stocking densities is not large, but will be

more significant the larger the disparity between stocking

intervals. The aim therefore should be to stock consis-

tently according to the minimum expected stocking

interval for the most evenly distributed population

biomass in the long term. Regular stocking events have

the added advantage of creating a more stable food web,

particularly the zooplankton–phytoplankton size struc-

ture (Carpenter, Kitchell & Hodgson, 1985).

The limitation of applying the steady-state model in

real-world scenarios is that all populations will have

changing stock structures to some degree. This does not

mean that the steady-state population approach cannot be

used. It remains a powerful approach for considering the

needs of all cohorts and for maintaining a reasonably

stable distribution of biomass in real populations. The

drawback is that the TDC in actual populations can

increase between years as abundant cohorts age. This

means that the steady-state stocking density in a given

year may overestimate future steady-state stocking den-

sities. If the model is used annually, however, and use is

made of the forecasting output (Fig. 3 – box 4), serious

overstocking will be avoided.

Model validation

It is difficult to validate the model using the study

impoundments, as the model was parameterised with

site-specific data, so a certain amount of agreement

between model outputs and population status is expected.

Nonetheless, there are some population parameters that

can be used to gauge the model’s accuracy. The asymptotic

length (L1) of each population can reflect relative biomass

density and growth rates (Lorenzen & Enberg, 2002), and it

is expected that the relative modelled biomass densities in
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the study impoundments would be inversely proportional

to their actual L1 values. However, the reverse is true. The

model predicts Flat Rock to have the highest biomass

density and Danjera the lowest (Table 7), but this is the

same for their L1 values, with Flat Rock having by far

the largest, albeit uncertain, L1 (Tables 1 & 2). Either the

asymptotic length is a poor indicator of biomass density in

these impoundments, or the model’s estimates of popula-

tion size, individual consumption or environmental pro-

duction are inaccurate. Support for the accuracy of the

model’s estimate of population size is observed in the

catch-per-unit-effort data (Table 7). Flat Rock did have

the greatest relative biomass density (CPUE). The popu-

lation L1 values therefore may be representing size-

specific fishing pressure (Walters & Martell, 2004) rather

than biomass density. Alternatively, the production in Flat

Rock is greater than predicted, which may be the case

given that proportion of autochthonous energy increases

as impoundment size declines (Doi, 2009; Reynolds, 2008).

This may not be sufficiently captured by the current model

that focuses on autochthonous energy sources. The current

model also uses the trophic-level estimates for the Brogo

Dam population for all three sites. If the fish in Flat Rock

feed generally from lower trophic levels than in Brogo

Dam, then a greater biomass of fish could be supported

from a given level of production. Site-specific stomach-

content or stable isotope analyses would help refine this

aspect of the model.

Further support for the model is gained from a mark–

recapture experiment carried out in 2010 in Brogo Dam

(Appendix S4). The estimated population size using

numerous statistics (8530–10 560 fish) closely matches

model simulations run for the same period (9147 fish;

Table A4.1). Some agreement must be expected, as Brogo

Dam was the impoundment used to estimate the mortality

in the model (Appendix S1), but nonetheless it adds

support to the model’s accuracy.

Limitations and sources of error

The values used for the consumption parameters bmax and

q were borrowed from other species, and the Cav model is

a generic consumption model derived from many species

(but not Australian bass). Species-specific data could

improve the reliability of model outputs. If species-

specific data are generally absent, the sensitivity analysis

suggests that priority should be given to collecting data

for trophic components (particularly the trophic level of

the stocked fish) and mortality (Mr) and growth (L1).

Trophic level has an inverse relationship with stocking

density because the transfer of energy declines with

increasing trophic level, meaning that populations at a

higher trophic level are necessarily smaller for a given

surplus productivity. An increase in the Mr parameter of

the mortality function causes an increase in the density of

fish that need to be stocked. L1 is inversely related to

stocking density through both the growth and mortality

components. An increase in L1 increases the body mass of

the average Australian bass and also reduces the mortality

rate, both of which increase the population’s total

consumption. This in turn decreases the density of fish

that should be stocked. Given that L1 is such an

influential parameter, and because it will change in

response to biomass density (which is not expressed in

the model), frequent stock analyses are recommended.

The addition of a function that predicts the change in L1
in response to biomass density (e.g. Lorenzen & Enberg,

2002) could also benefit this model.

There is a question as to whether these fisheries are well

designed for a predictive production-based model, given

the large amount of variation that exists in the environ-

ment and in Australian bass (Smith et al., 2011b,a).

Therefore, there is a possibility that databases of stocking

histories and stock assessments or yield-based regressions

(Oglesby, 1977; Matuszek, 1978; Hanson & Leggett, 1982)

are better suited to these environments. These approaches

actually support a predictive production-based model,

because chlorophyll-a can be correlated with fish yield

(Downing & Plante, 1993; Leach et al., 1987) and catch

rates (Michaletz, 2009), although the relationship can be

influenced by lake trophy (McQueen, Post & Mills, 1986).

The ‘maintain’ stocking densities show much less uncer-

tainty than the steady-state outputs because they do not

incorporate the uncertainty associated with surplus pro-

duction. These maintenance densities are therefore a

robust alternative to the production-based estimates if

the current state of the fishery is deemed suitable, and the

available production is assumed reasonably constant.

The representation of carrying capacity in this model is a

useful upper limit to stocking densities. Carrying capacity

is often a target of stocking programmes (Li, 1999;

Aprahamian et al., 2003), but in the current model Cmin is

a scenario that should probably be avoided. The main

limitation of using Cmin to estimate carrying capacity is the

assumption that the model components that determine

surplus production (e.g. transfer efficiency, standing stock

biomass) are independent of consumer pressure. This is

unlikely to be true. It is unclear whether the carrying

capacity in this model refers to the point of maximum

population biomass (Daily & Ehrlich, 1992), and further

research is needed to understand the relationship between

consumption rates and carrying capacity.
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There is no density-dependent mortality explicit in this

model. This is because it could not be detected in the

stocking histories of the study impoundments, despite

some difference in the magnitude of stocking events.

Density-dependent mortality is generally incorporated

into population dynamic models through the stock–

recruitment relationship (Hilborn & Walters, 1992), but

because stocking can bypass the natural limitations

which regulate wild populations in the long term

(namely density-dependent recruitment), and because

natural recruitment does not occur in these Australian

bass fisheries (Harris, 1986), a stock–recruitment function

was not used. Density-dependent mortality is indirectly

considered in the model, however, because survivorship

is negatively related to size (eqn 5). This means if

populations experiencing density-dependent competition

are correctly assigned lower L1 values, they are also

assigned higher proportional mortality. Additionally, the

Cmin output addresses density-dependent mortality indi-

rectly, because it represents the upper limit to population

size and beyond this density-dependent mortality is

considered to be absolute. The lack of an integrated

component expressing density-dependent mortality

means that the proportional survival is independent of

stocking density, which could inflate the size of the

actual population if there is a history of large stocking

events. Thus, caution should be used if historical stock-

ing densities exceed the estimated Cmin steady-state

stocking density.

There is also no compensatory growth explicit within

the model. Growth rates are often density dependent

(Lorenzen & Enberg, 2002; Post, Parkinson & Johnston,

1999; Walters & Juanes, 1993; Lorenzen, 1995), but are

considered density independent in this model. Using

various consumption scenarios does address the concept

indirectly if consumption and growth rate are assumed to

be positively related. The model outputs are, however,

dependent on the growth rate estimated using the von

Bertalanffy relationship. It is possible that incorporating

density dependence in mortality and growth would

improve the model’s accuracy.

Estimating the available surplus production is associ-

ated with considerable uncertainty, and this resulted in

steady-state stocking densities with wide probability

distributions. Production is driven by the concentration

of zooplankton and chlorophyll-a (for phytoplankton) in a

stocked system. Temperature is the only parameter used

to drive phytoplankton productivity (Appendix S2), but

admittedly irradiance is equally important (Reynolds,

1984). A spatially explicit phytoplankton model that

includes irradiance could benefit this stocking model.

The demonstrated scenario using Australian bass used

chlorophyll-a concentrations from 2010 only, and incor-

porating a time-series of data may be more realistic by

incorporating interannual variation in phytoplankton

productivity.

In conclusion, this study shows that a general produc-

tion-based stocking model can be a useful management

aid for stocked fisheries, particularly by acknowledging

differing management objectives in the model’s consump-

tion component. The model demonstrates that there may

not be a single ‘optimal’ stocking density for a specific

impoundment, owing to the necessary trade-off between

the consumption rates (akin to growth rates) of individ-

uals and a stocked population’s size. Seasonal variation in

both consumption rates and prey production influences

stocking density, and further research is needed to

determine whether it is the seasonal minima or maxima

in prey production, which is a better indicator of a

population’s size. A precautionary stance would suggest

that, for a given consumption scenario, the stocking

densities are based on the seasonal minima. It was also

observed that bottlenecks may not always be in winter, as

Flat Rock Dam showed higher relative consumption in

winter than in summer. This supports a site-specific

approach to stocking management.

The steady-state basis for providing stocking density

estimates should also encourage sustainable stocking

practices in closed fisheries. This requires significant

investment in the forecasting of stocking densities, but a

stocking regime that focuses on approaching a steady-

state fishery is the one most likely to meet its objectives. It

may not always be possible for managers to regularly

stock fish at ecologically sustainable densities, owing to

economic or practical limitations, but it should be a

priority. Like all stocking models, this model would be

most beneficial when used in conjunction with other

assessment tools as part of a comprehensive programme

(Taylor et al., 2005; Molony et al., 2003) to ensure that

stocked populations are managed effectively.
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Blackwell Publishing, Oxford.

Lorenzen K. (1995) Population dynamics and management of

culture-based fisheries. Fisheries Management and Ecology, 2,

61–73.

Lorenzen K. (2000) Allometry of natural mortality as a basis

for assessing optimal release size in fish-stocking pro-

grammes. Canadian Journal of Fisheries and Aquatic Sciences,

57, 2374–2381.

Lorenzen K. (2005) Population dynamics and potential of

fisheries stock enhancement: practical theory for assess-

ment and policy analysis. Philosophical Transactions of the

Royal Society B Biological Sciences, 360, 171–189.

Lorenzen K. & Enberg K. (2002) Density-dependent growth

as a key mechanism in the regulation of fish populations:

evidence from among-population comparisons. Proceedings

of the Royal Society of London B Biological Sciences, 269, 49–54.

Marshall C.T. & Peters R.H. (1989) General patterns in the

seasonal development of chlorophyll a for temperate lakes.

Limnology and Oceanography, 34, 856–867.

Matuszek J.E. (1978) Empirical predictions of fish yields of

large North-American lakes. Transactions of the American

Fisheries Society, 107, 385–394.

McQueen D.J., Post J.R. & Mills E.L. (1986) Trophic relation-

ships in freshwater pelagic ecosystems. Canadian Journal of

Fisheries and Aquatic Sciences, 43, 1571–1581.

Michaletz P.H. (2009) Variable responses of channel catfish

populations to stocking rate: density-dependent and lake

productivity effects. North American Journal of Fisheries

Management, 29, 177–188.

Miranda L.E. (2002) Establishing size-based mortality caps.

North American Journal of Fisheries Management, 22, 433–440.

Molony B.W., Lenanton R., Jackson G. & Norriss J. (2003)

Stock enhancement as a fisheries management tool. Reviews

in Fish Biology and Fisheries, 13, 409–432.

Munro J.L. & Bell J.D. (1997) Enhancement of marine fisheries

resources. Reviews in Fisheries Science, 5, 185–222.

Ney J.J. (1990) Trophic economics in fisheries: assessment of

demand-supply relationships between predators and prey.

Reviews in Aquatic Sciences, 2, 55–82.

Oglesby R.T. (1977) Relationships of fish yield to lake

phytoplankton standing crop, production, and morphoe-

daphic factors. Journal of the Fisheries Research Board of

Canada, 34, 2271–2279.

1498 J. A. Smith et al.

� 2012 Blackwell Publishing Ltd, Freshwater Biology, 57, 1482–1499



Palomares M.L.D. & Pauly D. (1998) Predicting food con-

sumption of fish populations as functions of mortality,

food type, morphometrics, temperature and salinity.

Marine and Freshwater Research, 49, 447–453.

Pauly D. & Christensen V. (1995) Primary production

required to sustain global fisheries. Nature, 374, 255–257.

Post J.R., Parkinson E.A. & Johnston N.T. (1999) Density-

dependent processes in structured fish populations: inter-

action strengths in whole-lake experiments. Ecological

Monographs, 69, 155–175.

Reynolds C.S. (1984) The Ecology of Freshwater Phytoplankton.

Cambridge University Press, Cambridge.

Reynolds C.S. (2008) A changing paradigm of pelagic food

webs. International Review of Hydrobiology, 93, 517–531.

Smith J.A., Baumgartner L.J., Suthers I.M. & Taylor M.D.

(2011a) Distribution and movement of a stocked freshwater

fish: implications of a variable habitat volume for stocking

programs. Marine and Freshwater Research, 62, 1342–1353.

Smith J.A., Baumgartner L.J., Suthers I.M. & Taylor M.D.

(2011b) Generalist niche, specialist strategy: the diet of an

Australian percichthyid. Journal of Fish Biology, 78, 1183–

1199.

Solomon C.T., Carpenter S.R., Cole J.J. & Pace M.L. (2008)

Support of benthic invertebrates by detrital resources and

current autochthonous primary production: results from a

whole-lake 13C addition. Freshwater Biology, 53, 42–54.

Stewart D.J., Weininger D., Rottiers D.V. & Edsall T.A. (1983)

An energetics model for lake trout, Salvelinus namaycush:

application to the Lake Michigan population. Canadian

Journal of Fisheries and Aquatic Sciences, 40, 681–698.

Taylor M.D., Palmer P.J., Fielder D.S. & Suthers I.M. (2005)

Responsible estuarine finfish stock enhancement: an Aus-

tralian perspective. Journal of Fish Biology, 67, 299–331.

Taylor M.D. & Suthers I.M. (2008) A predatory impact model

and targeted stock enhancement approach for optimal

release of mulloway (Argyrosomus japonicus). Reviews in

Fisheries Science, 16, 125–134.

Walters C.J. & Juanes F. (1993) Recruitment limitation as a

consequence of natural selection for use of restricted

feeding habitats and predation risk taking by juvenile

fishes. Canadian Journal of Fisheries and Aquatic Sciences, 50,

2058–2070.

Walters C.J. & Martell J.D. (2004) Fisheries Ecology and

Management. Princeton University Press, Princeton, NJ.

Walters C.J. & Post J.R. (1993) Density-dependent growth and

competitive asymmetries in size-structured fish popula-

tions: a theoretical model and recommendations for field

experiments. Transactions of the American Fisheries Society,

122, 34–45.

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1. Mortality.

Appendix S2. Production.

Appendix S3. Trophic level and diet composition.

Appendix S4. Mark–recapture and CPUE.

Appendix S5. Stocking histories.

As a service to our authors and readers, this journal

provides supporting information supplied by the authors.

Such materials are peer-reviewed and may be re-orga-

nized for online delivery, but are not copy-edited or

typeset. Technical support issues arising from supporting

information (other than missing files) should be ad-

dressed to the authors.

(Manuscript accepted 4 April 2012)

Modelling stocking density in impoundments 1499

� 2012 Blackwell Publishing Ltd, Freshwater Biology, 57, 1482–1499


